Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T05:27:26.434Z Has data issue: false hasContentIssue false

On the distribution of the maximum of sums of mutually independent and identically distributed random variables

Published online by Cambridge University Press:  01 July 2016

Lajos Takács*
Affiliation:
Case Western Reserve University

Extract

Throughout this paper we shall be concerned with a sequence of mutually independent and identically distributed random variables ξ1 ξ2, · · ·, ξn, · · · taking on real values. We shall use the notation ζn = ξ1 + · · · + ξn for n = 1, 2, · · · and ζ0 = 0.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1970 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chung, K. L. and Fuchs, W. H. J. (1951) On the distribution of values of sums of random variables. Mem. Amer. Math. Soc. 6, 112.Google Scholar
[2] Darling, D. A. (1956) The maximum of sums of stable random variables. Trans, Amer. Math. Soc. 83, 164169.Google Scholar
[3] Erdös, P. and Kac, M. (1946) On certain limit theorems of the theory of probability Bull. Amer. Math. Soc. 52, 292302.Google Scholar
[4] Khintchtne, A. Y. (1929) Sur la loi des grands nombres. Comptes Rendus Acad. Sci. (Paris) 188, 477479.Google Scholar
[5] Kolmogorov, A. N. (1930) Sur la loi forte des grands nombres. Comptes Rendus Acad. Sci. (Paris) 191, 910912.Google Scholar
[6] Lindley, D. V. (1952) The theory of queues with a single server. Proc. Camb. Phil. Soc. 48, 277289.Google Scholar
[7] Osgood, W. F. (1948) Functions of a Complex Variable. Hafner, New York.Google Scholar
[8] Pollaczek, F. (1952) Fonctions caractéristiques de certaines répartitions définies au moyen de la notion d'ordre. Application a la théorie des attentes. Comptes Rendus Acad. Sci. (Paris) 234, 23342336.Google Scholar
[9] Pollaczek, F. (1957) Problèmes Stochastiques Posés par le Phénomène de Formation d'une Queue d'Attente à un Guichet et par des Phénomènes Apparentés. Gauthier-Villars, Paris.Google Scholar
[10] Spitzer, F. (1956) A combinatorial lemma and its application to probability theory. Trans. Amer. Math. Soc. 82, 323339.Google Scholar
[11] Täcklind, S. (1942) Sur le risque de ruine dans des jeux inéquitables. Skand. Aktuartidskr. 25, 142.Google Scholar
[12] Wald, A. (1948) On the distribution of the maximum of successive cumulative sums of independent but not identically distributed chance variables. Bull. Amer. Math. Soc. 54, 422430.Google Scholar