Article contents
The Rao–Blackwell theorem in stereology and some counterexamples
Published online by Cambridge University Press: 01 July 2016
Abstract
A version of the Rao–Blackwell theorem is shown to apply to most, but not all, stereological sampling designs. Estimators based on random test grids typically have larger variance than quadrat estimators; random s-dimensional samples are worse than random r-dimensional samples for s < r. Furthermore, the standard stereological ratio estimators of different dimensions are canonically related to each other by the Rao–Blackwell process. However, there are realistic cases where sampling with a lower-dimensional probe increases efficiency. For example, estimators based on (conditionally) non-randomised test point grids may have smaller variance than quadrat estimators. Relative efficiency is related to issues in geostatistics and the theory of wide-sense stationary random fields. A uniform minimum variance unbiased estimator typically does not exist in our context.
Keywords
MSC classification
- Type
- Stochastic Geometry and Statistical Applications
- Information
- Copyright
- Copyright © Applied Probability Trust 1995
Footnotes
The original version of this paper was presented at the International Workshop on Stochastic Geometry, Stereology and Image Analysis held at the Universidad Internacional Menendez Pelayo, Valencia, Spain, on 21–24 September 1993.
References
- 20
- Cited by