Published online by Cambridge University Press: 01 July 2016
This paper analyzes, derives efficient computational procedures and numerically investigates the following fluid model which is of interest in manufacturing and communications: m producing machines supply a buffer, n consuming machines feed off it. Each machine independently alternates between exponentially distributed random periods in the ‘in service' and ‘failed' states. Producers/consumers have their own failure/repair rates and working capacities. When the buffer is either full or empty some of the machines in service are not utilized to capacity; otherwise they are fully utilized. Our main result is for the state distribution of the Markovian system in equilibrium which is the solution of a system of differential equations. The spectral expansion for its solution is obtained. Two important decompositions are obtained: the eigenvectors have the Kronecker-product form in lower-dimensional vectors; the characteristic polynomial is factored with each factor an explicitly given polynomial of degree at most 4. All eigenvalues are real. For each of various cases of the model, a system of linear equations is derived from the boundary conditions; their solution complete the spectral expansion. The count in operations of the entire procedure is O(m3n3): independence from buffer size exemplifies an important attraction of fluid models. Computations have revealed several interesting features, such as the benefit of small machines and the inelasticity of production rate to inventory. We also give results on the eigenvalues of a more general fluid model, reversible Markov drift processes.
However, the resulting deterministic models, often described as fluid, are to be distinguished from stochastic fluid models such as the one in this paper.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.