Hostname: page-component-54dcc4c588-9xpg2 Total loading time: 0 Render date: 2025-10-11T03:59:01.130Z Has data issue: false hasContentIssue false

Uniqueness of locally stable Gibbs point processes via spatial birth–death dynamics

Published online by Cambridge University Press:  09 October 2025

Samuel Baguley*
Affiliation:
University of Potsdam
Andreas Göbel*
Affiliation:
University of Potsdam
Marcus Pappik*
Affiliation:
University of Potsdam
*
*Postal address: University of Potsdam, Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2–3, 14482 Potsdam, Germany.
*Postal address: University of Potsdam, Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2–3, 14482 Potsdam, Germany.
*Postal address: University of Potsdam, Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2–3, 14482 Potsdam, Germany.

Abstract

We prove that for every locally stable and tempered pair potential $\phi$ with bounded range, there exists a unique infinite-volume Gibbs point process on $\mathbb{R}^{d}$ for every activity $\lambda < ({e}^{L} \hat{C}_{\phi})^{-1}$, where L is the local stability constant and $\hat{C}_{\phi} \,:\!=\, \sup_{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}} 1 - {e}^{-\left\lvert \phi(x, y) \right\rvert} \mathrm{d} y$ is the (weak) temperedness constant. Our result extends the uniqueness regime that is given by the classical Ruelle–Penrose bound by a factor of at least ${e}$, where the improvements become larger as the negative parts of the potential become more prominent (i.e. for attractive interactions at low temperature). Our technique is based on the approach of Dyer et al. (2004 Random Structures & Algorithms 24, 461–479): We show that for any bounded region and any boundary condition, we can construct a Markov process (in our case spatial birth–death dynamics) that converges rapidly to the finite-volume Gibbs point process while the effects of the boundary condition propagate sufficiently slowly. As a result, we obtain a spatial mixing property that implies uniqueness of the infinite-volume Gibbs measure.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bertini, L., Cancrini, N. and Cesi, F. (2002). The spectral gap for a Glauber-type dynamics in a continuous gas. Annales de l’Institut Henri Poincare (B) Probability and Statistics 38, 91108.10.1016/S0246-0203(01)01085-8CrossRefGoogle Scholar
Betsch, S. and Last, G. (2023). On the uniqueness of Gibbs distributions with a nonnegative and subcritical pair potential. Annales de l’Institut Henri Poincare (B) Probability and Statistics 59, 706725.Google Scholar
Blumenthal, R. and Getoor, R. (1968). Markov Processes and Potential Theory . Pure and Applied Mathematics. Academic Press.Google Scholar
Chen, M. F. (1980 (in Chinese)). Reversible Markov processes in abstract space. Chinese Ann. of Math. 1, 310.Google Scholar
Chen, M. F. (1986). Coupling for jump processes. Acta Mathematica Sinica 2, 123136.Google Scholar
Daley, D. J. and Vere-Jones, D. (2007). An Introduction to the Theory of Point Processes : Volume II: General Theory and Structure. Springer Science & Business Media.Google Scholar
Dereudre, D. (2019). Introduction to the theory of Gibbs point processes. In Stochastic Geometry. Springer pp. 181229.10.1007/978-3-030-13547-8_5CrossRefGoogle Scholar
Dereudre, D. and Vasseur, T. (2020). Existence of Gibbs point processes with stable infinite range interaction. Journal of Applied Probability 57, 775791.10.1017/jpr.2020.39CrossRefGoogle Scholar
Dobruschin, P. (1968). The description of a random field by means of conditional probabilities and conditions of its regularity. Theory of Probability & Its Applications 13, 197224.10.1137/1113026CrossRefGoogle Scholar
Dyer, M., Sinclair, A., Vigoda, E. and Weitz, D. (2004). Mixing in time and space for lattice spin systems: A combinatorial view. Random Structures & Algorithms 24, 461479.10.1002/rsa.20004CrossRefGoogle Scholar
Feller, W. (1991). An Introduction to Probability Theory and its Applications, Volume 2 vol. 81. John Wiley & Sons.Google Scholar
Fernández, R., Groisman, P. and Saglietti, S. (2016). Stability of gas measures under perturbations and discretizations. Reviews in Mathematical Physics 28, 1650022.10.1142/S0129055X16500227CrossRefGoogle Scholar
Fialho, P., de Lima, B. N. and Procacci, A. (2021). Cluster expansion for continuous particle systems interacting via an attractive pair potential and subjected to high density boundary conditions. arXiv preprint arXiv:2102.02782.Google Scholar
Friedrich, T., Göbel, A., Krejca, M. S. and Pappik, M. (2023). Polymer dynamics via cliques: new conditions for approximations. Theoretical Computer Science 942, 230252.10.1016/j.tcs.2022.11.035CrossRefGoogle Scholar
Georgii, H.-O. (1976). Canonical and grand canonical Gibbs states for continuum systems. Communications in Mathematical Physics 48, 3151.10.1007/BF01609410CrossRefGoogle Scholar
Gibbs, J. W. (1902). Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundations of Thermodynamics. C. Scribner’s sons.Google Scholar
He, Q. (2024). Analyticity for classical hard-core gases via recursion. arXiv preprint arXiv:2405.04451.Google Scholar
Helmuth, T., Perkins, W. and Petti, S. (2022). Correlation decay for hard spheres via Markov chains. The Annals of Applied Probability 32, 20632082.10.1214/21-AAP1728CrossRefGoogle Scholar
den Hollander, F. Probability theory: The coupling method. Lecture notes available online at https://prob.math.leidenuniv.nl/lecturenotes/CouplingLectures.pdf 2012.Google Scholar
Houdebert, P. and Zass, A. (2022). An explicit Dobrushin uniqueness region for gibbs point processes with repulsive interactions. Journal of Applied Probability 59, 541555.10.1017/jpr.2021.70CrossRefGoogle Scholar
Jansen, S. Gibbsian point processes. Lecture notes available online at https://www.mathematik.uni-muenchen.de/personen/professoren/jansen/index.html 2018.Google Scholar
Jansen, S. (2019). Cluster expansions for Gibbs point processes. Advances in Applied Probability 51, 11291178.10.1017/apr.2019.46CrossRefGoogle Scholar
Jansen, S. Markov jump processes. Lecture notes available online at https://www.mathematik.uni-muenchen.de/personen/professoren/jansen/index.html 2020.Google Scholar
Jansen, S. and Kolesnikov, L. (2022). Cluster expansions: necessary and sufficient convergence conditions. Journal of Statistical Physics 189, 33.10.1007/s10955-022-02992-6CrossRefGoogle Scholar
Kondratiev, Y., Kuna, T. and Ohlerich, N. (2013). Spectral gap for Glauber type dynamics for a special class of potentials. Electronic Journal Of Probability 18,.10.1214/EJP.v18-2260CrossRefGoogle Scholar
Kondratiev, Y. and Lytvynov, E. (2005). Glauber dynamics of continuous particle systems. Annales de l’Institut Henri Poincare (B) Probability and Statistics 41, 685702.10.1016/j.anihpb.2004.05.002CrossRefGoogle Scholar
Lanford, III, O. E. and Ruelle, D. (1969). Observables at infinity and states with short range correlations in statistical mechanics. Communications in Mathematical Physics 13, 194215.10.1007/BF01645487CrossRefGoogle Scholar
Last, G. and Penrose, M. (2017). Lectures on the Poisson process vol. 7. Cambridge University Press.10.1017/9781316104477CrossRefGoogle Scholar
Michelen, M. and Perkins, W. (2021). Potential-weighted connective constants and uniqueness of Gibbs measures. arXiv preprint arXiv:2109.01094.Google Scholar
Michelen, M. and Perkins, W. (2022). Analyticity for classical gasses via recursion. Communications in Mathematical Physics 1–22.Google Scholar
Penrose, O. (1963). Convergence of fugacity expansions for fluids and lattice gases. Journal of Mathematical Physics 4, 13121320.10.1063/1.1703906CrossRefGoogle Scholar
Poghosyan, S. and Zessin, H. (2021). Characterization and uniqueness of gibbs processes by means of kirkwood–salsburg equations. Lobachevskii Journal of Mathematics 42, 24272436.10.1134/S199508022110019XCrossRefGoogle Scholar
Poghosyan, S. and Zessin, H. (2022). Penrose-stable interactions in classical statistical mechanics. In Annales Henri Poincaré. vol. 23 Springer. pp. 739771.Google Scholar
Preston, C. (1975). Spatial birth and death processes. Advances in Applied Probability 7, 465466.10.1017/S0001867800040726CrossRefGoogle Scholar
Preston, C. (1976). Random Fields vol. 534 of Lecture Notes in Mathematics. Springer-Verlag.10.1007/BFb0080565CrossRefGoogle Scholar
Procacci, A. and Yuhjtman, S. A. (2017). Convergence of Mayer and Virial expansions and the Penrose tree-graph identity. Letters in Mathematical Physics 107, 3146.10.1007/s11005-016-0918-7CrossRefGoogle Scholar
Ruelle, D. (1963). Correlation functions of classical gases. Annals of Physics 25, 109120.10.1016/0003-4916(63)90336-1CrossRefGoogle Scholar
Ruelle, D. (1999). Statistical Mechanics: Rigorous results. World Scientific.10.1142/4090CrossRefGoogle Scholar
Schuhmacher, D. and Stucki, K. (2014). Gibbs point process approximation: total variation bounds using Stein’s method. The Annals of Probability 42, 19111951.10.1214/13-AOP895CrossRefGoogle Scholar
Serfozo, R. F. (2005). Reversible Markov processes on general spaces and spatial migration processes. Advances in Applied Probability 37, 801818.10.1239/aap/1127483748CrossRefGoogle Scholar
Xanh, N. X. and Zessin, H. (1979). Integral and differential characterizations of the Gibbs process. Mathematische Nachrichten 88, 105115.10.1002/mana.19790880109CrossRefGoogle Scholar