Published online by Cambridge University Press: 01 July 2016
In a branching process with variable lifetime, introduced by Fildes (1972) define Yjk(t) as the number of particles alive in generation k at time t when the initial particle is born in generation j. A limit law similar to that derived in the Bellman-Harris process is proved where it is shown that Yjk(t) suitably normalised converges in mean square to a random variable which is the limit random variable of Znm–n in the Galton-Watson process (m is the mean number of particles born).