Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T04:00:56.941Z Has data issue: false hasContentIssue false

Applied probability as theoretical science: 50 years in the applied probability community

Published online by Cambridge University Press:  01 February 2019

Peter Jagers*
Affiliation:
Chalmers University of Technology and University of Gothenburg
*
Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden. Email address: jagers@chalmers.se
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Applied Probability Trust 2018 

References

[1]Crump, K. S. and Mode, C. J. (1968).A general age-dependent branching process. I.J. Math. Anal. Appl. 24,494508.Google Scholar
[2]Crump, K. S. and Mode, C. J. (1969).A general age-dependent branching process. II.J. Math. Anal. Appl. 25,817.Google Scholar
[3]Heyde, C. C. and Seneta, E. (1977).I. J. Bienaymé: Statistical Theory Anticipated.Springer,New York.Google Scholar
[4]Jagers, P. (1969).A general stochastic model for population development.Skand. Aktuarietiskr. 52,84103.Google Scholar
[5]Kingman, J. F. C. (2014).Applied probability before 1964, and after 2014. In Celebrating 50 Years of The Applied Probability Trust (J. Appl. Prob. Spec. Vol. 51A), eds S. Asmussen, P. Jagers, I. Molchanov and L. C. G. Rogers,Applied Probability Trust,Sheffield, pp. 59.Google Scholar
[6]Kolmogorov, A. (1933).Grundbegriffe der Wahrscheinlichkeitsrechnung.Springer,Berlin.Google Scholar