Hostname: page-component-7dd5485656-j7khd Total loading time: 0 Render date: 2025-10-29T08:15:27.434Z Has data issue: false hasContentIssue false

The asymptotic shape of the branching random walk

Published online by Cambridge University Press:  01 July 2016

J. D. Biggins*
Affiliation:
University of Sheffield
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a supercritical branching random walk on Rp, a Galton–Watson process with the additional feature that people have positions, let be the set of positions of the nth-generation people, scaled by the factor n–1. It is shown that when the process survives looks like a convex set for large n. An analogous result is established for an age-dependent branching process in which people also have positions. In certain cases an explicit formula for the asymptotic shape is given.

Information

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1978 

Footnotes

This article originally published with an error. The error has been rectified and a correction notice published.

References

Biggins, J. D. (1976) The first and last birth problems for a multitype age-dependent branching process. Adv. Appl. Prob. 8, 446459.Google Scholar
Biggins, J. D. (1977a) Martingale convergence in the branching random walk. J. Appl. Prob. 14, 2537.Google Scholar
Biggins, J. D. (1977b) Chernoff's Theorem in the branching random walk. J. Appl. Prob. 14,.Google Scholar
Brown, L. D. (1971) Admissible estimators, recurrent diffusions and insoluble boundary value problems. Ann. Math. Statist. 42, 855903.Google Scholar
Daniels, H. E. (1977a) Contribution to the discussion of Mollison (1977).Google Scholar
Daniels, H. E. (1977b) The advancing wave in a spatial process. J. Appl. Prob. 14 (4)Google Scholar
Hammersley, J. M. (1974) Postulates for subadditive processes. Ann. Prob. 2, 652680.Google Scholar
Harris, T. E. (1963) The Theory of Branching Processes. Springer, Berlin.Google Scholar
Jagers, P. (1975) Branching Processes with Biological Applications. Wiley, London.Google Scholar
Kingman, J. F. C. (1975) The first birth problem for an age-dependent branching process. Ann. Prob. 12, 341345.Google Scholar
Mollison, D. (1977) Spatial contact models for ecological and epidemic spread. J. R. Statist. Soc. B 39,Google Scholar
Mollison, D. (1978) Markovian contact processes. Adv. Appl. Prob. 10,Google Scholar
Ney, P. E. (1965) The convergence of a random distribution function associated with a branching process. J. Math. Anal. Appl. 12, 316327.Google Scholar
Renshaw, E. (1977) Contribution to the discussion of Mollison (1977).Google Scholar
Rockafellar, R. T. (1970) Convexity Analysis. Princeton University Press, Princeton, N.J.Google Scholar
Rogers, C. A. (1970) Hausdorff Measures. Cambridge University Press.Google Scholar