Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T13:07:45.843Z Has data issue: false hasContentIssue false

Efficient simulation of Brown‒Resnick processes based on variance reduction of Gaussian processes

Published online by Cambridge University Press:  29 November 2018

Marco Oesting*
Affiliation:
University of Siegen
Kirstin Strokorb*
Affiliation:
Cardiff University
*
* Postal address: Department of Mathematics, University of Siegen, 57072 Siegen, Germany. Email address: oesting@mathematik.uni-siegen.de
** Postal address: School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK. Email address: strokorbk@cardiff.ac.uk

Abstract

Brown‒Resnick processes are max-stable processes that are associated to Gaussian processes. Their simulation is often based on the corresponding spectral representation which is not unique. We study to what extent simulation accuracy and efficiency can be improved by minimizing the maximal variance of the underlying Gaussian process. Such a minimization is a difficult mathematical problem that also depends on the geometry of the simulation domain. We extend Matheron's (1974) seminal contribution in two directions: (i) making his description of a minimal maximal variance explicit for convex variograms on symmetric domains, and (ii) proving that the same strategy also reduces the maximal variance for a huge class of nonconvex variograms representable through a Bernstein function. A simulation study confirms that our noncostly modification can lead to substantial improvements among Gaussian representations. We also compare it with three other established algorithms.

Type
Original Article
Copyright
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R. J. and Taylor, J. E. (2007).Random Fields and Geometry.Springer,New York.Google Scholar
Asadi, P.,Davison, A. C. and Engelke, S. (2015).Extremes on river networks.Ann. Appl. Statist. 9,20232050.Google Scholar
Berg, C.,Christensen, J. P. R. and Ressel, P. (1984).Harmonic Analysis on Semigroups (Graduate Texts Math. 100).Springer,New York.Google Scholar
Brown, B. M. and Resnick, S. I. (1977).Extreme values of independent stochastic processes.J. Appl. Prob. 14,732739.Google Scholar
Buhl, S. and Klüppelberg, C. (2016).Anisotropic Brown-Resnick space-time processes: estimation and model assessment.Extremes 19,627660.Google Scholar
Chilès, J. P. and Delfiner, P. (2012).Geostatistics: Modeling Spatial Uncertainty,2nd edn.John Wiley,Hoboken, NJ.Google Scholar
Davison, A. C.,Huser, R. and Thibaud, E. (2013).Geostatistics of dependent and asymptotically independent extremes.Math. Geosci. 45,511529.Google Scholar
Dȩbicki, K.,Kosínski, K. M.,Mandjes, M. and Rolski, T. (2010).Extremes of multidimensional Gaussian processes.Stoch. Process. Appl. 120,22892301.Google Scholar
De Haan, L. (1984).A spectral representation for max-stable processes.Ann. Prob. 12,11941204.Google Scholar
Dieker, A. B. and Mikosch, T. (2015).Exact simulation of Brown-Resnick random fields at a finite number of locations.Extremes 18,301314.Google Scholar
Dombry, C.,Engelke, S. and Oesting, M. (2016).Exact simulation of max-stable processes.Biometrika 103,303317.Google Scholar
Einmahl, J. H. J.,Kiriliouk, A.,Krajina, A. and Segers, J. (2016).An M-estimator of spatial tail dependence.J. R. Statist. Soc. B 78,275298.Google Scholar
Engelke, S.,Malinowski, A.,Kabluchko, Z. and Schlather, M. (2015).Estimation of Hüsler-Reiss distributions and Brown-Resnick processes.J. R. Statist. Soc. B 77,239265.Google Scholar
Gaume, J. et al. (2013).Mapping extreme snowfalls in the French Alps using max-stable processes.Water Resources Res. 49,10791098.Google Scholar
Gelfand, A. E.,Diggle, P. J.,Fuentes, M. and Guttorp, P. (eds) (2010).Handbook of Spatial Statistics.CRC Press,Boca Raton, FL.Google Scholar
Giné, E.,Hahn, M. G. and Vatan, P. (1990).Max-infinitely divisible and max-stable sample continuous processes.Prob. Theory Relat. Fields 87,139165.Google Scholar
Gneiting, T. (1999).Isotropic correlation functions on d-dimensional balls.Adv. Appl. Prob. 31,625631.Google Scholar
Gneiting, T. (2000).Addendum to `Isotropic correlation functions on d-dimensional balls'.Adv. Appl. Prob. 32,960961.Google Scholar
Gneiting, T.,Sasvári, Z. and Schlather, M. (2001).Analogies and correspondences between variograms and covariance functions.Adv. Appl. Prob. 33,617630.Google Scholar
Kabluchko, Z. (2011).Extremes of independent Gaussian processes.Extremes 14,285310.Google Scholar
Kabluchko, Z.,Schlather, M. and de Haan, L. (2009).Stationary max-stable fields associated to negative definite functions.Ann. Prob. 37,20422065.Google Scholar
Liu, Z.,Blanchet, J. H.,Dieker, A. B. and Mikosch, T. (2018).On logarithmically optimal exact simulation of max-stable and related random fields on a compact set. To appear in Bernoulli.Google Scholar
Mardia, K. V. and Khatri, C. G. (1977).Uniform distribution on a Stiefel manifold.J. Multivariate Anal. 7,468473.Google Scholar
Matheron, G. (1973).The intrinsic random functions and their applications.Adv. Appl. Prob. 5,439468.Google Scholar
Matheron, G. (1974). Représentations stationnaires et représentations minimales pour les F.A.I.-k. Tech. Rep. (Note Géostatistique 125). Centre de Géostatistique, École des Mines de Paris, France.Google Scholar
Nachbin, L. (1976).The Haar Integral.Robert E. Krieger Publishing,Huntington, NY.Google Scholar
Oesting, M. and Stein, A. (2018).Spatial modeling of drought events using max-stable processes.Stoch. Environ. Res. Risk Assess. 32,6381.Google Scholar
Oesting, M. and Strokorb, K. (2018). A comparative tour through the simulation algorithms for max-stable processes. Preprint. Available at http://arxiv.org/abs/1809.09042v1.Google Scholar
Oesting, M.,Kabluchko, Z. and Schlather, M. (2012).Simulation of Brown-Resnick processes.Extremes 15,89107.Google Scholar
Oesting, M.,Schlather, M. and Friederichs, P. (2017).Statistical post-processing of forecasts for extremes using bivariate Brown-Resnick processes with an application to wind gusts.Extremes 20,309332.Google Scholar
Oesting, M.,Schlather, M. and Zhou, C. (2018).Exact and fast simulation of max-stable processes on a compact set using the normalized spectral representation.Bernoulli 24,14971530.Google Scholar
Rudin, W. (1970).An extension theorem for positive-definite functions.Duke Math. J 37,4953.Google Scholar
Sang, H. and Genton, M. G. (2014).Tapered composite likelihood for spatial max-stable models.Spat. Statist. 8,86103.Google Scholar
Schilling, R. L.,Song, R. and Vondraček, Z. (2010).Bernstein Functions: Theory and Applications (De Gruyter Stud. Math. 37).Walter de Gruyter,Berlin.Google Scholar
Schlather, M. (2002).Models for stationary max-stable random fields.Extremes 5,3344.Google Scholar
Stein, M. L. (2001).Local stationarity and simulation of self-affine intrinsic random functions.IEEE Trans. Inform. Theory 47,13851390.Google Scholar
Strokorb, K. (2013).Characterization and construction of max-stable processes. Doctoral Thesis. Georg-August-Universität Göttingen.Google Scholar
Thibaud, E. et al. (2016).Bayesian inference for the Brown-Resnick process, with an application to extreme low temperatures.Ann. Appl. Statist. 10,23032324.Google Scholar