Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-10-10T21:21:17.661Z Has data issue: false hasContentIssue false

Estimation of on- and off-time distributions in a dynamic Erdős–Rényi random graph

Published online by Cambridge University Press:  09 October 2025

Michel R. H. Mandjes*
Affiliation:
Leiden University ; University of Amsterdam
Jiesen Wang*
Affiliation:
University of Amsterdam
*
*Postal address: Mathematical Institute, Leiden University, P.O. Box 9512, 2300, RA Leiden, The Netherlands. Email: m.r.h.mandjes@math.leidenuniv.nl
***Postal address: University of Amsterdam, Science Park 107, 1098 XG Amsterdam, The Netherlands. Email: jiesenwang@gmail.com

Abstract

In this paper we consider a dynamic Erdős–Rényi graph in which edges, according to an alternating renewal process, change from present to absent and vice versa. The objective is to estimate the on- and off-time distributions while only observing the aggregate number of edges. This inverse problem is dealt with, in a parametric context, by setting up an estimator based on the method of moments. We provide conditions under which the estimator is asymptotically normal, and we point out how the corresponding covariance matrix can be identified. We also demonstrate how to adapt the estimation procedure if alternative subgraph counts are observed, such as the number of wedges or triangles.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aït-Sahalia, Y., Cacho-Diaz, J. A. and Laeven, R. (2015). Modeling financial contagion using mutually exciting jump processes. J. Financ. Econ. 117, 585606.10.1016/j.jfineco.2015.03.002CrossRefGoogle Scholar
Asanjarani, A., Nazarathy, Y. and Taylor, P. (2021). A survey of parameter and state estimation in queues. Queueing Syst. 97, 3980.10.1007/s11134-021-09688-wCrossRefGoogle Scholar
Asmussen, S. (2003). Applied Probability and Queues, 2nd ed. Springer, New York, US.Google Scholar
Athreya, S., den Hollander, F. and Röllin, A. (2020). Graphon-valued stochastic processes from population genetics. Ann. Appl. Probab. 31, 17241745.Google Scholar
Billingsley, P. (1995). Probability and Measure, 3rd ed. Wiley, New York, US.Google Scholar
Bingham, N., Goldie, C. and Teugels, J. (1987). Regular Variation. Cambridge University Press, Cambridge, UK.10.1017/CBO9780511721434CrossRefGoogle Scholar
Blom, J. and Mandjes, M. (2011). Traffic generated by a semi-Markov Additive Process. Probab. Eng. Inf. Sci. 25, 2127.10.1017/S0269964810000227CrossRefGoogle Scholar
Braunsteins, P., den Hollander, F. and Mandjes, M. (2023). A sample-path large deviation principle for dynamic Erdős–Rényi random graphs. Ann. Appl. Probab. 33, 32783320.10.1214/22-AAP1892CrossRefGoogle Scholar
Butler, R. (2007). Saddlepoint Approximations with Applications. Cambridge University Press, Cambridge, UK.10.1017/CBO9780511619083CrossRefGoogle Scholar
Cauchemez, S. and Ferguson, N. (2008). Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in London J. R. Soc. Interface 5, 885897.10.1098/rsif.2007.1292CrossRefGoogle Scholar
Chatterjee, S. and Varadhan, S. (2011). The large deviation principle for the Erdős–Rényi random graph. Eur. J. Comb. 32, 10001017.10.1016/j.ejc.2011.03.014CrossRefGoogle Scholar
Crane, H. (2016). Dynamic random networks and their graph limits. Ann. Appl. Probab. 26, 691721.10.1214/15-AAP1098CrossRefGoogle Scholar
Daniels, H. (1954). Saddlepoint approximations in statistics. Ann. Math. Stat. 25, 631650.10.1214/aoms/1177728652CrossRefGoogle Scholar
Davison, A., Hautphenne, S. and Kraus, A. (2021). Parameter estimation for discretely observed linear birth-and-death processes. Biometrics 77, 186196.10.1111/biom.13282CrossRefGoogle ScholarPubMed
Duffie, D. and Glynn, P. (2004). Estimation of continuous-time Markov processes sampled at random time intervals. Econometrica 72, 17731808.10.1111/j.1468-0262.2004.00553.xCrossRefGoogle Scholar
Gallo, A., Garlaschelli, D., Lambiotte, R., Saracco, F. and Squartini, T. (2024). Testing structural balance theories in heterogeneous signed networks. Commun. Phys. 154, paper no. 154.10.1038/s42005-024-01640-7CrossRefGoogle Scholar
Goodman, J. (2022). Asymptotic accuracy of the saddlepoint approximation for maximum likelihood estimation. Ann. Stat. 50, 20212046.10.1214/22-AOS2169CrossRefGoogle Scholar
de Gunst, M., Hautphenne, S., Mandjes, M. and Sollie, B. (2021). Parameter estimation for multivariate population processes: a saddlepoint approach. Stochastic Models 37, 168196.10.1080/15326349.2020.1832895CrossRefGoogle Scholar
de Gunst, M., Knapik, B., Mandjes, M. and Sollie, B. (2019). Parameter estimation for a discretely observed population process under Markov-modulation. Comput. Stat. Data Anal. 140, 88103.10.1016/j.csda.2019.06.008CrossRefGoogle Scholar
Guttorp, P. (1991). Statistical Inference for Branching Processes. Wiley, Chichester, UK.Google Scholar
Hansen, M. and Pitts, S. M. (2006). Nonparametric inference from the M/G/1 workload. Bernoulli 12, 737759.10.3150/bj/1155735934CrossRefGoogle Scholar
den Hollander, F., Mandjes, M., Roccaverde, A. and Starreveld, N. (2018). Ensemble equivalence for dense graphs. Electron. J. Probab. 23, paper no. 12.Google Scholar
Kenyon, R., Radin, C., Ren, K. and Sadun, L. (2017). The phases of large networks with edge and triangle constraints. J. Phys. A 50, paper no. 435001.10.1088/1751-8121/aa8ce1CrossRefGoogle Scholar
Okamura, H., Dohi, T. and Trivedi, K. (2009). Markovian arrival process parameter estimation with group data. IEEE/ACM Trans. Networking 17, 13261339.10.1109/TNET.2008.2008750CrossRefGoogle Scholar
Radin, C., Ren, K. and Sadun, L. (2018). A symmetry breaking transition in the edge/triangle network model. Annales Institut H. Poincaré D 5, 251286.Google Scholar
Ravner, L., Boxma, O. and Mandjes, M. (2019). Estimating the input of a Lévy-driven queue by Poisson sampling of the workload process. Bernoulli 25, 37343769.10.3150/19-BEJ1109CrossRefGoogle Scholar
Taqqu, M., Willinger, W. and Sherman, R. (1997). Proof of a fundamental result in self-similar traffic modeling. ACM SIGCOMM Comput. Commun. Rev. 27, 523.10.1145/263876.263879CrossRefGoogle Scholar
van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes. Springer, New York, USA.10.1007/978-1-4757-2545-2CrossRefGoogle Scholar
Whitt, W. (2002). Stochastic-Process Limits. Springer, New York, USA.10.1007/b97479CrossRefGoogle Scholar