Published online by Cambridge University Press: 01 July 2016
In this paper we deal with generalized fractional kinetic equations driven by a Gaussian noise, white in time and correlated in space, and where the diffusion operator is the composition of the Bessel and Riesz potentials for any fractional parameters. We give results on the existence and uniqueness of solutions by means of a weak formulation and study the Hölder continuity. Moreover, we prove the existence of a smooth density associated to the solution process and study the asymptotics of this density. Finally, when the diffusion coefficient is constant, we look for its Gaussian index.
Partially supported by the grant MTM 2006-01351.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.