Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T11:07:36.807Z Has data issue: false hasContentIssue false

Interacting particle systems approximations of the Kushner-Stratonovitch equation

Published online by Cambridge University Press:  01 July 2016

D. Crişan*
Affiliation:
University of Cambridge
P. Del Moral*
Affiliation:
Université Paul Sabatier
T. J. Lyons*
Affiliation:
Imperial College
*
Postal address: DPMMS, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, UK.
∗∗ Postal address: Lab Stat et Probabilités, CNRS UMR C55830, Bat. 1R1, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France. Email address: delmoral@cict.fr
∗∗∗ Postal address: Department of Mathematics, Imperial College, Huxley Building, 180 Queen's Gate, London SW7 2BZ, UK.

Abstract

In this paper we consider the continuous-time filtering problem and we estimate the order of convergence of an interacting particle system scheme presented by the authors in previous works. We will discuss how the discrete time approximating model of the Kushner-Stratonovitch equation and the genetic type interacting particle system approximation combine. We present quenched error bounds as well as mean order convergence results.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 1999 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Work partly supported by CEC Contract no. ERB-FMRX-CT96-0075.

References

Crisan, D. and Lyons, T. J. (1997). Nonlinear filtering and measure valued processes. Prob. Theory Rel. Fields 109, 217244.CrossRefGoogle Scholar
Crisan, D., Del Moral, P. and Lyons, T. J. (1998). Discrete filtering using branching and interacting particle systems. Publ. Lab. Statist. Prob. Univ. Paul Sabatier, no. 01-98.Google Scholar
Crisan, D., Gaines, J. and Lyons, T. J. (1999). A particle approximation of the solution of the Kushner–Stratonovitch equation. To appear in SIAM J. Appl. Math.CrossRefGoogle Scholar
Del Moral, P. (1996). Non linear filtering using random particles. Theor. Prob. Appl. 40 690701.CrossRefGoogle Scholar
Del Moral, P. (1996). Non-linear filtering: interacting particle resolution. Markov Proc. Rel. Fields 2.Google Scholar
Del Moral, P. (1997). Filtrage non linéaire par systèmes de particules en intéraction. C.R. Acad. Sci. Paris, Série I 325, 653658.CrossRefGoogle Scholar
Del Moral, P. (1998). Measure valued processes and interacting particle systems. Application to non linear filtering problems. Ann. Appl. Prob. 8, 438495.CrossRefGoogle Scholar
Del Moral, P. (1998). A uniform convergence theorem for the numerical solving of non linear filtering problems. J. Appl. Prob. 35, 873884.CrossRefGoogle Scholar
Del Moral, P. and Guionnet, A. (1998). Large deviations for interacting particle systems. Applications to non linear filtering problems. Stoch. Proc. Appl. 78, 6995.CrossRefGoogle Scholar
Del Moral, P. and Guionnet, A. (1999). A central limit theorem for non linear filtering using interacting particle systems. Ann. Appl. Prob. 9, 275297.CrossRefGoogle Scholar
Del Moral, P., Jacod, J. and Protter, P. (1998). The Monte Carlo method for filtering with discrete-time observations. Prépublication no. 453 du Laboratoire de Probabilités de L'Université Paris VI, 1998.Google Scholar
Di Masi, G. B., Pratelli, M. and Runggaldier, W. G. (1985). An approximation for the non linear filtering problem with error bounds. Stochastics 14, 247271.CrossRefGoogle Scholar
Fortet, R. and Mourier, B. (1953). Convergence de la répartition empirique vers la répartition théorique. Ann. Sci. École Norm. Sup. 70, 267285.CrossRefGoogle Scholar
Gordon, N. J., Salmon, D. J. and Smith, A. F. M. (1993). Novel approach to non-linear/non-Gaussian Bayesian state estimation. IEEE Proceedings F-Radar and Signal Processing 140, 107113.CrossRefGoogle Scholar
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.Google Scholar
Korezlioglu, H. (1987). Computation of filters by sampling and quantization. Center for Stochastic Processes, University of North Carolina, Technical Report No 208.CrossRefGoogle Scholar
Korezlioglu, H. and Maziotto, G. (1983). Modelization and filtering of discrete systems and discrete approximation of continuous systems. In Proc VI Conférence INRIA, Modélisation et Optimisation des Systèmes, Nice, France.Google Scholar
Korezlioglu, H. and Runggaldier, W. J. (1993). Filtering for non linear systems driven by nonwhite noises: an approximating scheme. Stoch. Stoch. Rep. 44, 65102.CrossRefGoogle Scholar
Legland, F. (1989). High order time discretization of nonlinear filtering equations. In Proc. 28th IEEE CDC. IEEE, New York, pp. 26012606.Google Scholar
Pardoux, E. and Talay, D. (1985). Approximation and simulation of solutions of stochastic differential equations. Acta Appl. Math. 3, 2347.CrossRefGoogle Scholar
Picard, J. (1984). Approximation of non linear filtering problems and order of convergence. In Filtering and control of random processes. (Lecture Notes in Control and Inform. Sci. 61). Springer, Berlin.Google Scholar
Picard, J. (1986). Nonlinear filtering of one-dimensional diffusions in the case of a high signal-to-noise ratio. SIAM J. Appl. Math. 16, 10981125.CrossRefGoogle Scholar
Picard, J. (1986). An estimate of the error in time discretization of nonlinear filtering problems. In Proc. 7th MTNS – Theory and Applications of Nonlinear Control Systems, eds. Byrnes, C. I. and Lindquist, A.. North–Holland, Amsterdam, pp. 401412.Google Scholar
Talay, D. (1984). Efficient numerical schemes for the approximation of expectations of functionals of the solution of S.D.E. and applications. In Filtering and Control of random processes (Paris 1983) (Lecture Notes in Control and Inform. Sci. 61). Springer, Berlin, pp. 294313.CrossRefGoogle Scholar
Van Dootingh, M., Viel, F., Rakotopara, D. and Gauthier, J. P. (1991). Coupling of non-linear control with a stochastic filter for state estimation: application on a free radical polymerization reactor. In Advanced control of chemical processes ADCHEM'91, selected papers from IFAC Symposium, ed. Najim, K. and Dufour, E.. Pergamon Press, Oxford.Google Scholar