Published online by Cambridge University Press: 01 July 2016
We generalise the work of Cramér and Leadbetter, Ylvisaker and Ito on the level crossings of a stationary Gaussian process to multivariate processes. Necessary and sufficient conditions for the existence of the expected number of crossings E(C) of the boundary of a region of ℝp by a stationary vector stochastic process are obtained, along with an explicit formula for E(C) in the Gaussian case. A rigorous proof of Belyaev's integral formula for the factorial moments of the number of exits from a region of ℝp is given for a class of processes which includes Gaussian processes having a finite second order spectral moment matrix. Applications to χ2 processes are briefly considered.