Article contents
On a deposition process on the circle with disorder
Published online by Cambridge University Press: 01 July 2016
Abstract
Throw n points sequentially and at random onto a unit circle and append a clockwise arc (or rod) of length s to each such point. The resulting random set (the free gas of rods) is a union of a random number of clusters with random sizes modelling a free deposition process on a one-dimensional substrate. A variant of this model is investigated in order to take into account the role of the disorder, θ > 0; this involves Dirichlet(θ) distributions. For such free deposition processes with disorder θ, we shall be interested in the occurrence times and probabilities, as n grows, of two specific types of configurations: those avoiding overlapping rods (the hard-rod gas) and those for which the largest gap is smaller than the rod length s (the packing gas). Special attention is paid to the thermodynamic limit when ns = ρ for some finite density ρ of points. The occurrence of parking configurations, those for which hard-rod and packing constraints are both fulfilled, is then studied. Finally, some aspects of these problems are investigated in the low-disorder limit θ ↓ 0 as n ↑ ∞ while nθ = γ > 0. Here, Poisson-Dirichlet(γ) partitions play some role.
Keywords
- Type
- Stochastic Geometry and Statistical Applications
- Information
- Copyright
- Copyright © Applied Probability Trust 2004
References
- 2
- Cited by