No CrossRef data available.
Published online by Cambridge University Press: 01 July 2016
This paper gives an overview of recurrence and ergodicity properties of a Markov chain. Two new notions for ergodicity and recurrence are introduced. They are called μ -geometric ergodicity and μ -geometric recurrence respectively. The first condition generalises geometric as well as strong ergodicity. Our key theorem shows that μ -geometric ergodicity is equivalent to weak μ -geometric recurrence. The latter condition is verified for the time-discretised two-centre open Jackson network. Hence, the corresponding two-dimensional Markov chain is μ -geometrically and geometrically ergodic, but not strongly ergodic. A consequence of μ -geometric ergodicity with μ of product-form is the convergence of the Laplace-Stieltjes transforms of the marginal distributions. Consequently all moments converge.
Postal address for both authors: Department of Mathematics and Computer Science, University of Leiden, Niels Bohrweg 1, 2333CA Leiden, The Netherlands.