Article contents
On large deviation rates for sums associated with Galton‒Watson processes
Published online by Cambridge University Press: 19 September 2016
Abstract
Given a supercritical Galton‒Watson process {Zn} and a positive sequence {εn}, we study the limiting behaviors of ℙ(SZn/Zn≥εn) with sums Sn of independent and identically distributed random variables Xi and m=𝔼[Z1]. We assume that we are in the Schröder case with 𝔼Z1 log Z1<∞ and X1 is in the domain of attraction of an α-stable law with 0<α<2. As a by-product, when Z1 is subexponentially distributed, we further obtain the convergence rate of Zn+1/Zn to m as n→∞.
Keywords
MSC classification
Secondary:
60F10: Large deviations
- Type
- Research Article
- Information
- Copyright
- Copyright © Applied Probability Trust 2016
References
[1]
Athreya, K. B. (1994).Large deviation rates for branching processes. I. Single type case. Ann. Appl. Prob.
4,779–790.CrossRefGoogle Scholar
[2]
Athreya, K. B. and Vidyashankar, A. N. (1997)..Large deviation rates for supercritical and critical branching processes. In Classical and Modern Branching Processes (IMA Vol. Math. Appl. 84),Springer,New York, pp.1–18.Google Scholar
[3]
Bingham, N. H.,Goldie, C. M. and Teugels, J. L. (1989).Regular Variation.Cambridge University Press.Google Scholar
[4]
Chu, W.,Li, W. V. and Ren, Y.-X. (2014).Small value probabilities for supercritical branching processes with immigration.Bernoulli
20,377–393.Google Scholar
[5]
Cline, D. B. H. and Hsing, T. (1998).Large deviation probabilities for sums of random variables with heavy or subexponential tails. Tech. Rep., Texas A&M University.Google Scholar
[6]
Denisov, D.,Dieker, A. B. and Shneer, V. (2008).Large deviations for random walks under subexponentiality: the big-jump domain.Ann. Prob.
36,1946–1991.CrossRefGoogle Scholar
[7]
Dubuc, S. (1971).Problèmes relatifs à l'itération de fonctions suggérés par les processus en cascade.Ann. Inst. Fourier (Grenoble)
21,171–251.Google Scholar
[8]
Feller, W. (1971).An Introduction to Probability Theory and Its Applications, Vol. II,2nd edn.John Wiley,New York.Google Scholar
[9]
Fleischmann, K. and Wachtel, V. (2007).Lower deviation probabilities for superciritcal Galton‒Watson processes.Ann. Inst. H. Poincaré Prob. Statist.
43,233–255.Google Scholar
[10]
Fleischmann, K. and Wachtel, V. (2008).Large deviations for sums indexed by the generations of a Galton‒Watson process.Prob. Theory Relat. Fields
141,445–470.Google Scholar
[11]
Jacob, C. and Peccoud, J. (1996).Inference on the initial size of a supercritical branching processes from migrating binomial observations.C. R. Acad. Sci. Paris I
322,875–880.Google Scholar
[12]
Jacob, C. and Peccoud, J. (1998).Estimation of the parameters of a branching process from migrating binomial observations.Adv. Appl. Prob.
30,948–967.CrossRefGoogle Scholar
[13]
Nagaev, A. V. (1967).On estimating the expected number of direct descendants of a particle in a branching process.Theory Prob. Appl.
12,314–320.Google Scholar
[14]
Nagaev, S. V. (1979).Large deviations of sums of independent random variables.Ann. Prob.
7,745–789.Google Scholar
[15]
Ney, P. E. and Vidyashankar, A. N. (2003).Harmonic moments and large deviation rates for supercritical branching processes.Ann. Appl. Prob.
13,475–489.Google Scholar
[16]
Ney, P. E. and Vidyashankar, A. N. (2004).Local limit theory and large deviations for superciritcal branching processes.Ann. Appl. Prob.
14,1135–1166.Google Scholar
[17]
Piau, D. (2004).Immortal branching Markov processes: averaging properties and PCR applications.Ann. Prob.
32,337–364.CrossRefGoogle Scholar
[18]
Pruitt, W. E. (1981).The growth of random walks and Lévy processes.Ann. Prob.
9,948–956.Google Scholar
[19]
Rozovskiĭ, L. V. (1998).Probabilities of large deviations of sums of independent random variables with a common distribution function from the domain of attraction of an asymmetric stable law.Theory Prob. Appl.
42,454–482.CrossRefGoogle Scholar
[20]
Samorodnitsky, G. and Taqqu, M. S. (1994).Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance.Chapman & Hall,New York.Google Scholar
- 7
- Cited by