Article contents
On operator fractional Lévy motion: integral representations and time-reversibility
Published online by Cambridge University Press: 06 June 2022
Abstract
In this paper, we construct operator fractional Lévy motion (ofLm), a broad class of infinitely divisible stochastic processes that are covariance operator self-similar and have wide-sense stationary increments. The ofLm class generalizes the univariate fractional Lévy motion as well as the multivariate operator fractional Brownian motion (ofBm). OfLm can be divided into two types, namely, moving average (maofLm) and real harmonizable (rhofLm), both of which share the covariance structure of ofBm under assumptions. We show that maofLm and rhofLm admit stochastic integral representations in the time and Fourier domains, and establish their distinct small- and large-scale limiting behavior. We also characterize time-reversibility for ofLm through parametric conditions related to its Lévy measure. In particular, we show that, under non-Gaussianity, the parametric conditions for time-reversibility are generally more restrictive than those for the Gaussian case (ofBm).
MSC classification
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust
References
- 2
- Cited by