Published online by Cambridge University Press: 01 July 2016
In, Tory and Pickard show that a simple subclass of unilateral AR processes identifies with Gaussian Pickard random fields on Z 2. First, we extend this result to the whole class of unilateral AR processes, by showing that they all satisfy a Pickard-type property, under which correlation matching and maximum entropy properties are assessed. Then, it is established that the Pickard property provides the ‘missing’ equations that complement the two-dimensional Yule-Walker equations, in the sense that the conjunction defines a one-to-one mapping between the set of AR parameters and a set of correlations. It also implies Markov chain conditions that allow exact evaluation of the likelihood and an exact sampling scheme on finite lattices.