Article contents
On zero-sum two-person undiscounted semi-Markov games with a multichain structure
Published online by Cambridge University Press: 08 September 2017
Abstract
Zero-sum two-person finite undiscounted (limiting ratio average) semi-Markov games (SMGs) are considered with a general multichain structure. We derive the strategy evaluation equations for stationary strategies of the players. A relation between the payoff in the multichain SMG and that in the associated stochastic game (SG) obtained by a data-transformation is established. We prove that the multichain optimality equations (OEs) for an SMG have a solution if and only if the associated SG has optimal stationary strategies. Though the solution of the OEs may not be optimal for an SMG, we establish the significance of studying the OEs for a multichain SMG. We provide a nice example of SMGs in which one player has no optimal strategy in the stationary class but has an optimal semistationary strategy (that depends only on the initial and current state of the game). For an SMG with absorbing states, we prove that solutions in the game where all players are restricted to semistationary strategies are solutions for the unrestricted game. Finally, we prove the existence of stationary optimal strategies for unichain SMGs and conclude that the unichain condition is equivalent to require that the game satisfies some recurrence/ergodicity/weakly communicating conditions.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Applied Probability Trust 2017
References
- 4
- Cited by