No CrossRef data available.
Published online by Cambridge University Press: 01 July 2016
We consider the problem of scheduling the transmissions of multiple data users (flows) sharing the same wireless channel (server). The unique feature of this problem is the fact that the capacity (service rate) of the channel varies randomly with time and asynchronously for different users. We study a scheduling policy called the exponential scheduling rule, which was introduced in an earlier paper. Given a system with N users, and any set of positive numbers {an}, n = 1, 2,…, N, we show that in a heavy-traffic limit, under a nonrestrictive ‘complete resource pooling’ condition, this algorithm has the property that, for each time t, it (asymptotically) minimizes maxnanq̃n(t), where q̃n(t) is the queue length of user n in the heavy-traffic regime.
Partially supported by NSF Grants ACI-0305644, CNS-0325788 and CNS-0347400.
Supported by NSF Grant ITR 00-85929.