Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T09:25:21.074Z Has data issue: false hasContentIssue false

Periodic steady state of loss systems with periodic inputs

Published online by Cambridge University Press:  01 July 2016

Helmut Willie*
Affiliation:
Deutsche Telekom
*
Postal address: Deutsche Telekom AG, Research and Technology Center, Postfach 100003, D-64276 Darmstadt, Germany.

Abstract

The input of a multiserver loss system is assumed to be a periodic random marked point process which has, with probability one, infinitely many construction points. It is shown that, independently of the initial distribution, there exists a unique periodic process modeling the periodic steady-state behaviour of the loss system. In addition, practical sufficient conditions for the existence of enough construction points are derived.

MSC classification

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Asmussen, S. and Rolski, T. (1994). Risk theory in a periodic environment: the Cramer–Lundberg approximation and Lundberg's inequality. Math. Operat. Res. 19, 410433.Google Scholar
[2] Asmussen, S. and Thorisson, H. (1987). A Markov chain approach to periodic queues. J. Appl. Prob. 24, 215225.Google Scholar
[3] Bambos, N. and Walrand, J. (1989). On queues with periodic inputs. J. Appl. Prob. 26, 381389.Google Scholar
[4] Bauer, H. (1972). Probability Theory and Elements of Measure Theory. Holt, Rinehart and Winston, New York.Google Scholar
[5] Borovkov, A.A. (1976). Random Processes in Queueing Theory. Springer, Berlin.Google Scholar
[6] Borovkov, A.A. (1984). Asymptotic Methods in Queueing Theory. Wiley, New York.Google Scholar
[7] Ewdokimowa, G.S. (1974). On the waiting time distribution in the case of a periodically arriving traffic stream. Tech. Cyb. 3, 114118. (In Russian.).Google Scholar
[8] Fichtenholz, G.M. (1978). Differential- und Integralrechnung II. Deutscher Verlag der Wissenschaften, Berlin.Google Scholar
[9] Franken, P. (1970). Ein Stetigkeitssatz für Verlustsysteme. Operationsforsch. und Math. Statistik II. Akademie, Berlin. pp. 923.Google Scholar
[10] Franken, P. and Kalähne, U. (1978). Existence, uniqueness and continuity of stationary distributions for queueing systems without delay. Math. Nach. 86, 97115.Google Scholar
[11] Franken, P., König, D., Arndt, U. and Schmidt, V. (1982). Queues and Point Processes. Wiley, New York.Google Scholar
[12] Green, L. and Kolesar, P. (1991). The pointwise stationary approximation for queues with nonstationary arrivals. Management Sci. 37, 8497.Google Scholar
[13] Harrison, J.M. and Lemoine, A.J. (1977). Limit theorems for periodic queues. J. Appl. Prob. 14, 566576.CrossRefGoogle Scholar
[14] Heyman, D.P. and Whitt, W. (1984). The asymptotic behavior of queues with time-varying arrival rates. J. Appl. Prob. 21, 143156.CrossRefGoogle Scholar
[15] Lemoine, A.J. (1981). On queues with periodic Poisson inputs. J. Appl. Prob. 18, 889900.CrossRefGoogle Scholar
[16] Lemoine, A.J. (1989). Waiting time and workload in queues with periodic Poisson input. J. Appl. Prob. 26, 390397.Google Scholar
[17] Rolski, T. (1987). Approximation of periodic queues. Adv. Appl. Prob. 19, 691707.CrossRefGoogle Scholar
[18] Rolski, T. (1989). Queues with nonstationary inputs. Queueing Systems 5, 113130.Google Scholar
[19] Rolski, T. (1992). Approximations of performance characteristics in periodic Poisson queues. In: Queueing and related models. ed. Bhat, U.N. and Basawa, I.V.. Queueing and related models. Clarendon, Oxford. pp. 285298.Google Scholar
[20] Svoronos, A. and Green, L. (1987). The N-seasons S-servers loss system. Naval Res. Logist. 34, 579591.Google Scholar