Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T04:02:31.587Z Has data issue: false hasContentIssue false

Phragmén-Lindelöf (pl) theorems in probability theory

Published online by Cambridge University Press:  01 July 2016

H.-J. Rossberg*
Affiliation:
Karl-Marx Universität, Leipzig

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
I. Invited Review and Research Papers
Copyright
Copyright © Applied Probability Trust 1978 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Müller, I. (1977) Conservation theorems for the factorization identity ∊0K = (∊0H)(∊0U) . Math. Nachr. 78, 263266.Google Scholar
Riedel, M. (1978a) On a characterization problem in the queuing model G/G/1. Theory Prob. Appl. To appear.Google Scholar
Riedel, M. (1978b) Characterization of stable processes by identically distributed stochastic integrals. Theory Prob. Appl. To appear.Google Scholar
Riedel, M. (1978c) On determination of a stochastic process by means of stochastic integrals. Theory Prob. Appl. To appear.Google Scholar
Rossberg, H.-J. (1971) Ausbeutung einer bekannten Wiener–Hopf-Faktorisierung beim Wartemodell G/G/1 und einer mit ihm zusammenhängenden Irrfahrt. Math. Operationsforsch. Statist. 2, 129146.Google Scholar
Rossberg, H.-J. (1975) An extension of the Phragmén–Lindelöf theory, which is relevant in characterization theory. In A Modern Course on Statistical Distributions in Scientific Work, Vol. 3, ed. Patil, G. D., Kotz, S., Ord, J. K. Dordrecht-Boston.Google Scholar
Rossberg, H.-J. (1976) New view points, results and problems in the theory of Phragmén–Lindelöf. Ann. Polon. Math. 33, 91100.Google Scholar