Published online by Cambridge University Press: 01 July 2016
Let Xt, be a Markov random field assuming values in RM. Let In be a rectangular box in Zm with its center at 0 and corner points with coordinates ±n. Let (An) be a sequence of measurable subsets of RM such that neighborhood of t) → 0, for n → ∞; and let fn(x) be the indicator of An. Under appropriate conditions on the nearest-neighbor distributions of (Xt), the conditional distribution of given the values of Xs, for s on the boundary of In, converges to the Poisson distribution. An immediate application is an extreme value limit theorem for a real-valued Markov random field.
This paper represents results obtained at the Courant Institute of Mathematical Sciences, New York University, under the sponsorship of the U.S. Army Research Office, Grant number DAAG-29-85-K-0146, and the National Science Foundation, Grant DMS 85 01512.