Published online by Cambridge University Press: 08 September 2016
We study a random field obtained by counting the number of balls containing a given point when overlapping balls are thrown at random according to a Poisson random measure. We describe a microscopic process which exhibits multifractional behavior. We are particularly interested in the local asymptotic self-similarity (LASS) properties of the field, as well as in its X-ray transform. We obtain two different LASS properties when considering the asymptotics either in law or in the sense of second-order moments, and prove a relationship between the LASS behavior of the field and the LASS behavior of its X-ray transform. These results can be used to model and analyze porous media, images, or connection networks.