Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T05:50:20.816Z Has data issue: false hasContentIssue false

Stable laws and Beurling kernels

Published online by Cambridge University Press:  25 July 2016

Adam J. Ostaszewski*
Affiliation:
London School of Economics
*
Mathematics Department, London School of Economics, Houghton Street, London WC2A 2AE, UK. Email address: a.j.ostaszewski@lse.ac.uk

Abstract

We identify a close relation between stable distributions and the limiting homomorphisms central to the theory of regular variation. In so doing some simplifications are achieved in the direct analysis of these laws in Pitman and Pitman (2016); stable distributions are themselves linked to homomorphy.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aczél, J. (2005).Extension of a generalized Pexider equation.Proc. Amer. Math. Soc. 133,32273233.CrossRefGoogle Scholar
[2] Aczél, J. and Dhombres, J. (1989).Functional Equations in Several Variables, with Applications to Mathematics, Information Theory and to the Natural and Social Sciences (Encyclopedia Math. Appl. 31).Cambridge University Press.CrossRefGoogle Scholar
[3] Aczél, J. and Gołąb, St. (1970).Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms.Aequationes Math. 4,110.CrossRefGoogle Scholar
[4] Bingham, N. H. (1972).Random walk on spheres.Z. Wahrscheinlichkeitsth. 22,169192.CrossRefGoogle Scholar
[5] Bingham, N. H. and Goldie, C. M. (1982).Extensions of regular variation, I: uniformity and quantifiers.Proc. London Math. Soc. (3) 44,473496.CrossRefGoogle Scholar
[6] Bingham, N. H. and Ostaszewski, A. J. (2014).Beurling slow and regular variation.Trans. London Math. Soc. 1,2956.CrossRefGoogle Scholar
[7] Bingham, N. H. and Ostaszewski, A. J. (2015).Cauchy's functional equation and extensions: Goldie's equation and inequality, the Gołąb‒Schinzel equation and Beurling's equation.Aequationes Math. 89,12931310.CrossRefGoogle Scholar
[8] Bingham, N. H. and Ostaszewski, A. J. (2016).Additivity, subadditivity and linearity: automatic continuity and quantifier weakening. Preprint. Available at http://arxiv.org/abs/1405.3948v2.Google Scholar
[9] Bingham, N. H. and Ostaszewski, A. J. (2016).Beurling moving averages and approximate homomorphisms.Indag. Math. (N.S.) 27,601633. Fuller version available at http://arxiv.org/abs/1407.4093v2.CrossRefGoogle Scholar
[10] Bingham, N. H.,Goldie, C. M. and Teugels, J. L. (1989).Regular Variation (Encyclopedia Math. Appl. 27),2nd edn.Cambridge University Press.Google Scholar
[11] Bloom, W. R. and Heyer, H. (1995).Harmonic Analysis of Probability Measures on Hypergroups (De Gruyter Stud. Math. 20).Walter de Gruyter,Berlin.CrossRefGoogle Scholar
[12] Bojanić, R. and Karamata, J. (1963).On a class of functions of regular asymptotic behavior. Math. Research Center Tech. Report 436, Madison, Wisconsin. Reprinted in Selected Papers of Jovan Karamata, ed. V. Marić,Zavod za udžbenike,Beograd, 2009, pp. 545569.Google Scholar
[13] Brzdęk, J. (2005).The Gołąb‒Schinzel equation and its generalizations.Aequationes Math. 70,1424.CrossRefGoogle Scholar
[14] Chudziak, J. (2006).Semigroup-valued solutions of the Gołąb‒Schinzel type functional equation.Abh. Math. Semin. Univ. Hamburg 76,9198.CrossRefGoogle Scholar
[15] Feller, W. (1971).An Introduction to Probability Theory and Its Applications, Vol. 2,2nd edn.John Wiley,New York.Google Scholar
[16] Gupta, A. K.,Jagannathan, K.,Nguyen, T. T. and Shanbhag, D. N. (2006).Characterization of stable laws via functional equations.Math. Nachr. 279,571580.CrossRefGoogle Scholar
[17] Kuczma, M. (2009).An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality,2nd edn., ed. A. Gilányi.Birkhäuser,Basel.CrossRefGoogle Scholar
[18] Ostaszewski, A. J. (2015).Beurling regular variation, Bloom dichotomy, and the Gołąb‒Schinzel functional equation.Aequationes Math. 89,725744.CrossRefGoogle Scholar
[19] Ostaszewski, A. J. (2016).Homomorphisms from functional equations: the Goldie equation.Aequationes Math. 90,427448. Fuller version available at http://arxiv.org/abs/1407.4089.CrossRefGoogle Scholar
[20] Ostaszewski, A. J. (2016).Stable laws and Beurling kernels. Preprint. Available at http://arxiv.org/abs/1606.04307v1.Google Scholar
[21] Ostaszewski, A. J. (2016+).Homomorphisms from functional equations in probability. To appear in Developments in Functional Equations and Related Topics, eds. J. Brzdęk et al.,Springer.Google Scholar
[22] Pitman, E. J. G. and Pitman, J. W. (2016).A direct approach to the stable distributions. In Probability, Analysis and Number Theory (Adv. Appl. Prob. Spec. Vol. 48A), eds C. M. Goldie and A. Mijatovic,Applied Probability Trust,Sheffield, pp. 261282.Google Scholar
[23] Ramachandran, B. and Lau, K.-S. (1991).Functional Equations in Probability Theory.Academic Press,Boston.Google Scholar
[24] Stetkær, H. (2013).Functional Equations on Groups.World Scientific,Hackensack, NJ.CrossRefGoogle Scholar