Article contents
Subexponential potential asymptotics with applications
Published online by Cambridge University Press: 13 June 2022
Abstract
Let $X_t^\sharp$ be a multivariate process of the form $X_t =Y_t - Z_t$ , $X_0=x$ , killed at some terminal time T, where $Y_t$ is a Markov process having only jumps of length smaller than $\delta$ , and $Z_t$ is a compound Poisson process with jumps of length bigger than $\delta$ , for some fixed $\delta>0$ . Under the assumptions that the summands in $Z_t$ are subexponential, we investigate the asymptotic behaviour of the potential function $u(x)= \mathbb{E}^x \int_0^\infty \ell\big(X_s^\sharp\big)ds$ . The case of heavy-tailed entries in $Z_t$ corresponds to the case of ‘big claims’ in insurance models and is of practical interest. The main approach is based on the fact that u(x) satisfies a certain renewal equation.
MSC classification
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust
References
- 1
- Cited by