Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T15:31:34.925Z Has data issue: false hasContentIssue false

On Hedgehogs and Marvelous Minds

A New Technology for Point Data Collection?

Published online by Cambridge University Press:  20 October 2021

Austin “Chad” Hill*
Affiliation:
Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA; Department of Anthropology, Dartmouth College, Hanover, NH, USA
Morag M. Kersel
Affiliation:
Department of Anthropology, DePaul University, Chicago, IL, USA
Yorke M. Rowan
Affiliation:
The Oriental Institute, University of Chicago, Chicago, IL, USA
*
(chadhill@sas.upenn.edu, corresponding author)

Abstract

The collection of 3D point data is a common bottleneck for archaeological excavations despite an increasing range of powerful spatial data collection technologies. Total stations often require a dedicated operator, and they are optimal for excavation-level data collection over relatively short line-of-site distances. Precision Global Navigation Satellite Systems (GNSS) require reliable communication with constellations of distant satellites and may not be accurate enough for all data recording contexts. A new category of spatial data collection hardware, called Indoor Positioning Systems (IPS), or “indoor GPS,” has the potential to provide a more cost-effective and efficient approach to the collection of point data during excavations by making 3D point data collection widely available and accessible. Additionally, such systems may allow greater detail in digital field data recording by enabling the collection of shape data via continuous recording. In this article, we present one such IPS system—the Marvelmind IPS—discuss its potential value and limitations, and provide a case study of a field test of the system at the Chalcolithic (4600–3600 BC) site of Horvat Duvshan, Israel.

La recolección de datos puntuales en tres dimensiones es un cuello de botella común para las excavaciones arqueológicas, a pesar de un creciente rango de poderosas tecnologías de recolección de datos espaciales. Las estaciones totales con frecuencia requieren un operador dedicado y son óptimas para la recolección de datos a nivel de excavación a distancias de visibilidad directa relativamente cortas. Los Sistemas Globales de Navegación por Satélite (GNSS) de precisión requieren comunicación confiable con constelaciones de satélites distantes y pueden no ser lo bastante precisas para todos los contextos de registro de datos. Una nueva categoría de hardware de recolección de datos especiales, llamados Sistemas de Posicionamiento en Interiores (IPS), o “GPS de interiores”, tiene el potencial de ofrecer un abordaje más económico y eficiente a la recolección de datos puntuales durante excavaciones, haciendo la recolección de datos puntuales en tres dimensiones ampliamente disponible y accesible. Además, estos sistemas pueden permitir un mayor detalle en el registro digital de datos de campo habilitando la recolección de datos de forma a través de un registro continuo. En este artículo presentamos uno de estos sistemas IPS, el Marvelmind IPS, discutimos su valor y sus limitaciones potenciales, y proporcionamos un estudio de caso de una prueba de campo del sistema en el sitio Calcolítico (4600-3600 aC) de Horvat Duvshan, Israel.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of Society for American Archaeology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES CITED

Almeida-Warren, Katarina, Braun, David R., and Carvalho, Susana 2021 The DistoX2: A Methodological Solution to Archaeological Mapping in Poorly Accessible Environments. Journal of Archaeological Science: Reports 35:102688. DOI:10.1016/j.jasrep.2020.102688.Google Scholar
Amsters, Robin, Demeester, Eric, Stevens, Nobby, Lauwers, Quinten, and Slaets, Peter 2019 Evaluation of Low-Cost/High-Accuracy Indoor Positioning Systems, in ALLSENSORS 2019 The Fourth International Conference on Advances in Sensors, Actuators, Metering and Sensing, February 24–28, 2019, Athens, Greece, edited by Cruvinel, Paulo E. and Valente, Antonio, pp. 1520. IARIA, Athens. Electronic document, https://perma.cc/M4MC-ZVTE.Google Scholar
Averett, Erin Walcek, Gordon, Jody Michael, and Counts, Derek B. (editors) 2016 Mobilizing the Past for a Digital Future: The Potential of Digital Archaeology. The Digital Press at the University of North Dakota, Grand Forks. https://thedigitalpress.org/mobilizing-the-past-for-a-digital-future/.CrossRefGoogle Scholar
Bissaro-Júnior, Marcos C., Ghilardi, Renato P., Bueno, Matheus R., Manzoli, Anderson, Adorni, Fernando S., Muniz, Fellipe P., Guilherme, Edson, De Souza Filho, Jonas P., Negri, Francisco R., and Hsiou, Annie S. 2018 The Total Station as a Tool for Recording Provenance in Paleontology Fieldwork: Configuration, Use, Advantages, and Disadvantages. PALAIOS 33(2):5560. DOI:10.2110/palo.2017.070.CrossRefGoogle Scholar
Dibble, Harold L. 1987 Measurement of Artifact Provenience with an Electronic Theodolite. Journal of Field Archaeology 14:249254.Google Scholar
Di Pietra, Vincenzo, Dabove, Paolo, and Piras, Marco 2020 Loosely Coupled GNSS and UWB with INS Integration for Indoor/Outdoor Pedestrian Navigation. Sensors 20(21):6292. DOI:10.3390/s20216292.CrossRefGoogle ScholarPubMed
Douglass, Matthew, Lin, Sam, and Chodoronek, Michael 2015 The Application of 3D Photogrammetry for In-Field Documentation of Archaeological Features. Advances in Archaeological Practice 3:136152. DOI:10.7183/2326-3768.3.2.136.CrossRefGoogle Scholar
Forte, Maurizio 2014 3D Archaeology. New Perspectives and Challenges—The Example of Çatalhöyük. Journal of Eastern Mediterranean Archaeology and Heritage Studies 2:129. DOI:10.5325/jeasmedarcherstu.2.1.0001.Google Scholar
Gutiérrez, Gerardo, Erny, Grace, Friedman, Alyssa, Godsey, Melanie, and Gradoz, Machal 2016 Archaeological Topography with Small Unmanned Aerial Vehicles. SAA Archaeological Record 16(2):1014.Google Scholar
Hill, Austin C. 2019 Economical Drone Mapping for Archaeology: Comparisons of Efficiency and Accuracy. Journal of Archaeological Science: Reports 24:8091. DOI:10.1016/j.jasrep.2018.12.011.Google Scholar
Hill, Austin C., Limp, Fred, Casana, Jesse, Laugier, Elise J., and Williamson, Malcolm 2019 A New Era in Spatial Data Recording: Low-Cost GNSS. Advances in Archaeological Practice 7:169177. DOI:10.1017/aap.2018.50.CrossRefGoogle Scholar
Hill, Austin C., Price, Max D., and Rowan, Yorke M. 2016 Feasting at Marj Rabba, an Early Chalcolithic Site in the Galilee. Oxford Journal of Archaeology 35:127140. DOI:10.1111/ojoa.12081.CrossRefGoogle Scholar
Hill, Austin C., Rowan, Yorke, and Kersel, Morag M. 2014 Mapping with Aerial Photographs: Recording the Past, the Present, and the Invisible at Marj Rabba, Israel. Near Eastern Archaeology 77:182186. DOI:10.5615/neareastarch.77.3.0182.CrossRefGoogle Scholar
Hwangbo, Hyunwoo, Kim, Jonghjuk, Lee, Zoonky, and Kim, Soyean 2017 Store Layout Optimization Using Indoor Positioning System. International Journal of Distributed Sensor Networks 13. DOI:10.1177/1550147717692585.CrossRefGoogle Scholar
Jimenez, Victor J. E., Schwarzl, Christian, and Martin, Helmut 2019 Evaluation of an Indoor Localization System for a Mobile Robot. 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE):15. Graz, Austria. DOI:10.1109/ICCVE45908.2019.8965234.Google Scholar
Kvamme, Kenneth L., Ernenwein, Eileen G., and Markussen, Christine J. 2006 Robotic Total Station for Microtopographic Mapping: An Example from the Northern Great Plains. Archaeological Prospection 13:91102. DOI:10.1002/arp.270.CrossRefGoogle Scholar
Lerma, José L., Navarro, Santiage, Cabrelles, Miriam, and Villaverde, Valentín 2010 Terrestrial Laser Scanning and Close Range Photogrammetry for 3D Archaeological Documentation: The Upper Palaeolithic Cave of Parpalló as a Case Study. Journal of Archaeological Science 37:499507. DOI:10.1016/j.jas.2009.10.011.CrossRefGoogle Scholar
McCoy, Mark D., and Ladefoged, Thegn N. 2009 New Developments in the Use of Spatial Technology in Archaeology. Journal of Archaeological Research 17:263295. DOI:10.1007/s10814-009-9030-1.CrossRefGoogle Scholar
McPherron, Shannon J. P. 2005 Artifact Orientations and Site Formation Processes from Total Station Proveniences. Journal of Archaeological Science 32:10031014. DOI:10.1016/j.jas.2005.01.015.CrossRefGoogle Scholar
Morgan, Colleen, and Wright, Holly 2018 Pencils and Pixels: Drawing and Digital Media in Archaeological Field Recording. Journal of Field Archaeology 43:136151. DOI:10.1080/00934690.2018.1428488.CrossRefGoogle Scholar
Olson, Brandon R., Placchetti, Ryan A., Quartermaine, Jamie, and Killebrew, Ann E. 2013 The Tel Akko Total Archaeology Project (Akko, Israel): Assessing the Suitability of Multi-Scale 3D Field Recording in Archaeology. Journal of Field Archaeology 38:244262. DOI:10.1179/0093469013Z.00000000056.CrossRefGoogle Scholar
Opitz, Rachel S. 2013 An Overview of Airborne and Terrestrial Laser Scanning in Archaeology. In Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data, and Ground Observation, edited by Opitz, Rachel S. and Cowley, David C., pp. 1331. Oxbow, Oxford.CrossRefGoogle Scholar
Price, Max D., Hill, Austin C., Rowan, Yorke M., and Kersel, Morag M. 2016 Gazelles, Liminality, and Chalcolithic Ritual: A Case Study from Marj Rabba, Israel. Bulletin of the American Schools of Oriental Research 376:727. DOI:10.5615/bullamerschoorie.376.0007.CrossRefGoogle Scholar
QGIS Development Team 2021 QGIS User Guide. Electronic document, https://perma.cc/7HVT-JYHW, accessed May 6, 2021.Google Scholar
Robotics, Marvelmind 2021 Marvelmind Indoor Navigation System Operating Manual. Electronic document, https://perma.cc/G8Y3-WJ3G, accessed May 6, 2021.Google Scholar
Roosevelt, Christopher H. 2014 Mapping Site-Level Microtopography with Real-Time Kinematic Global Navigation Satellite Systems (RTK GNSS) and Unmanned Aerial Vehicle Photogrammetry (UAVP). Open Archaeology 1(1):2953. DOI:10.2478/opar-2014-0003.CrossRefGoogle Scholar
Roosevelt, Christopher H., Cobb, Peter, Moss, Emanuel, Olson, Brandon R., and Ünlüsoy, Sinan 2015 Excavation Is Destruction Digitization: Advances in Archaeological Practice. Journal of Field Archaeology 40:325346. DOI:10.1179/2042458215Y.0000000004.CrossRefGoogle Scholar
Rowan, Yorke, and Kersel, Morag 2014 New Perspectives on the Chalcolithic Period in the Galilee: Investigations at the Site of Marj Rabba. In Material Culture Matters: Essays on the Archaeology of the Southern Levant in Honor of Seymour Gitin, edited by Spencer, John R, Brody, Aaron, and Mullins, Robert, pp. 221237. Eisenbrauns, Winona Lake, Indiana.Google Scholar
Rowan, Yorke M., Kersel, Morag M., Hill, Austin C., and Urban, Thomas 2020 Late Prehistory of the Lower Galilee: Multi-Faceted Investigations of Wadi el-Ashert. Bulletin of the American Schools of Oriental Research 385. DOI:10.1086/711381.Google Scholar
Smith, Neil G., Howland, Matthew, and Levy, Thomas E. 2015 Digital Archaeology Field Recording in the 4th Dimension: ArchField C++ a 4D GIS for Digital Field Work. 2015 Digital Heritage 2:251258. DOI:10.1109/DigitalHeritage.2015.7419505.CrossRefGoogle Scholar
Smithline, Howard 2013 Horbat Duvshan: A “Golan” Chalcolithic Site in Eastern Galilee. Atiqot 73:1935.Google Scholar
Stepansky, Yosef 2014 Between Ayelet and Kinneret: The Archaeological Survey of the Corazim Plateau and North of Lake Kinneret. Qadmoniot 47:102109.Google Scholar