Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T03:50:06.685Z Has data issue: false hasContentIssue false

Boots on the Ground at Yaxnohcah

Ground-Truthing Lidar in a Complex Tropical Landscape

Published online by Cambridge University Press:  16 January 2017

Kathryn Reese-Taylor*
Affiliation:
Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada
Armando Anaya Hernández
Affiliation:
Centro de Investigaciones Históricas y Sociales, Universidad Autónoma de Campeche, CP 24039, San Francisco de Campeche, Campeche, México
F. C. Atasta Flores Esquivel
Affiliation:
Instituto de Investigaciones Antropológicos, Universidad Nacional Autónoma de México, México D.F.
Kelly Monteleone
Affiliation:
Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada
Alejandro Uriarte
Affiliation:
Instituto Nacional de Antropología e Historia, Arqueología, México D.F.
Christopher Carr
Affiliation:
Department of Geography, University of Cincinnati, Cincinnati, OH 45221, US
Helga Geovannini Acuña
Affiliation:
Centro de Investigaciones Históricas y Sociales, Universidad Autónoma de Campeche, CP 24039, San Francisco de Campeche, Campeche, México
Meaghan Peuramaki-Brown
Affiliation:
University of Athabasca, Athabasca, AB T9S 3A3, Canada
Nicholas Dunning
Affiliation:
Department of Geography, University of Cincinnati, Cincinnati, OH 45221, US

Abstract

This study proposes a sampling method for ground-truthing LiDAR-derived data that will allow researchers to verify or predict the accuracy of results over a large area. Our case study is focused on a 24 km2 area centered on the site of Yaxnohcah in the Yucatan Peninsula. This area is characterized by a variety of dense tropical rainforest and wetland vegetation zones with limited road and trail access. Twenty-one 100 x 100 m blocks were selected for study, which included examples of several different vegetation zones. A pedestrian survey of transects through the blocks was conducted, recording two types of errors. Type 1 errors consist of cultural features that are identified in the field, but are not seen in the digital elevation model (DEM) or digital surface model (DSM). Type 2 errors consist of features that appear to be cultural when viewed on the DEM or DSM, but are caused by different vegetative features. Concurrently, we conducted an extensive vegetation survey of each block, identifying major species present and heights of stories. The results demonstrate that the lidar survey data are extremely reliable and a sample can be used to assess data accuracy, fidelity, and confidence over a larger area.

Este trabajo propone un método de muestreo a fin de contrastar en el terreno los datos obtenidos a partir de imágenes LiDAR, que permitan al investigador verificar y/o predecir la precisión de los resultados sobre un área mayor. El estudio de caso aquí presentado se centra en el sitio de Yaxnohcah, ubicado en la Meseta Cárstica Central de la península de Yucatán. Está área se caracteriza por presentar una variedad de densos bosques tropicales húmedos y zonas de vegetación de humedal con pocos accesos de caminos y brechas. Para este estudio se seleccionaron veintiún bloques de 100 por 100 metros del área, que comprendió una muestra estratificada del 10 por ciento, e incluyeron ejemplos de varias zonas de vegetación distinta. Se realizó un recorrido de superficie por transectos a lo largo de los bloques, registrándose dos tipos de errores. Los Errores del Tipo 1 consisten de rasgos culturales identificados en campo, pero que no aparecen en el los Modelos Digital de Elevación (MDE) o en el Modelo de Superficie Digital (MSE). Los Errores de Tipo 2 consisten en rasgos que parecen culturales en el MDE o MSE, pero que en realidad son causadas por diferentes tipos de vegetación. De manera concurrente, realizamos un extenso reconocimiento de la vegetación en cada bloque, identificando las principales especies presentes, las diferentes alturas de dosel, así como las características generales de la topografía y los suelos. Los resultados del método de contrastación en el terreno demuestran que los datos lidar son sumamente confiables y es posible utilizar una muestra a fin de evaluar la precisión, la veracidad y la certidumbre de los datos sobre un área mayor.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Arellano Rodriguez, J. A., Guido, J. S. Flores, Garrido, J. Tun, and Bojorquez, M.M. Cruz 2003 Etnoflora Yucatanense: Nomenclatura, forma de vida, uso, manejo y distribución de las especies vegetales de la Península de Yucatán. Universidad Autónoma de Yucatán, Facultad de Medicina, Veterinaria, y Zootecnia, Fascículo 20. Mérida, Yucatán, México.Google Scholar
Boege, Eckart 1993 El Desarrollo Sustentable y La Reserva de la Biosfera de Calakmul, Campeche, México. Boletín de Antropología Americana 28L990132.Google Scholar
Chase, Arlen F., Chase, Diane Z., Weishampel, John F., Drake, Jason B., Shrestha, Ramesh L., Slatton, K. Clint, Awe, Jaime J., and Carter, William E. 2011 Airborne LiDAR, Archaeology, and the Ancient Maya Landscape at Caracol, Belize. Journal of Archaeological Science 38:387398.CrossRefGoogle Scholar
Crow, Peter, Benham, S., Devereux, B. J., and Amable, G. S. 2007 Woodland Vegetation and Its Implications for Archaeological Survey Using LiDAR. Forestry 80:241252.Google Scholar
Devereux, B.J., Amable, G. S., Crow, Peter, and Cliff, A. D. 2005 The Potential of Airborne LiDAR for the Detection of Archaeological Features under Woodland Canopies. Antiquity 76:648660.Google Scholar
Doneus, Michael, Briese, Christian, Fera, Martin, and Janner, Martin 2008 Archaeological Prospection of Forested Areas Using Full-Waveform Airborne Laser Scanning. Journal of Archaeological Science 35:882893.Google Scholar
Dunning, Nicholas P., and Beach, Timothy 2010 Farms and Forests: Spatial and Temporal Perspectives on Ancient Maya Landscapes. In Landscapes and Societies, edited by Martini, I. P. and Chesworth, W., pp. 369389. Springer Science+Business Media LLC, New York.Google Scholar
Dunning, Nicholas P., Beach, Timothy, and Luzzadder-Beach, Sheryl 2006 Pre-Columbian Water Management. In Environmental Variability among Bajos and its Implications for Ancient Maya Civilization and Archaeology, edited by Lucero, L. and Fash, B., pp. 111133. University of Arizona Press, Tempe.Google Scholar
Dunning, Nicholas P., Beach, Timothy, and Luzzadder-Beach, Sheryl 2012 Kax and Kol: Collapse and Resilience in Lowland Maya Civilization. Proceedings of the National Academy of Sciences 106:36523657.Google Scholar
Dunning, Nicholas P., Griffin, Robert, Jones, John G., Terry, Richard, Larsen, Zachary, and Carr, Christopher 2015 Life on the Edge: Tikal in a Bajo Landscape. In Tikal: Paleoecology of an Ancient Maya City, edited by Lentz, D. L., Dunning, N. P., and Scarborough, V. L., pp. 95123. Cambridge University Press, Cambridge.Google Scholar
Dunning, Nicholas P., Luzzadder-Beach, Sheryl, Beach, Timothy, Jones, John G., Scarborough, Vernon, and Culbert, T. Patrick 2002 Arising from the Bajos: The Evolution of a Neotropical Landscape and the Rise of Maya Civilization. Annals of the Association of American Geographers 92:26783.CrossRefGoogle Scholar
Evans, Damian H., Fletcher, Roland J., Pottier, Christophe, Chevance, Jean-Baptiste, Soutif, Dominque, Tan, Boun Suy, Im, Sokrithy, Ea, Darith, Tin, Tina, Kim, Samnang, Cromarty, Christopher, De Greef, Stèphane, Hanus, Kasper, Bâty, Pierre, Kuszinger, Robert, Shimoda, Ichita, and Boornazian, Glenn 2013 Uncovering Archaeological Landscapes at Angkor using LiDAR. Proceedings of the National Academy of Science 110(31):1259512600.Google Scholar
Fernandez-Diaz, Juan Carlos, Carter, William E., Shrestha, Ramesh L., and Glennie, Craig L. 2014 Now You See It… Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sensing 6(10):995110001.Google Scholar
Foody, G. M. 1996 Approaches for the Production and Evaluation of Fuzzy Land Cover Classifications from Remotely-Sensed Data. International Journal of Remote Sensing 17(7):13171340 Google Scholar
Foody, G. M., and Hill, R. A. 1996 Classification of Tropical Forest Classes from Landsat TM Data. International Journal of Remote Sensing 17(12):23532367.Google Scholar
Geovannini Acuña, Helga 2008 Rain Harvesting in the Rainforest. British Archaeological Reports, London.Google Scholar
Hageman, Jon B., Goldstein, David J., Nordine, Kelsey O., Niezgoda, Christine, and McCaffrey, Joanna 2014 The Mesoamerican Ethnobotanical Database. Electronic Document, http://emuweb.fieldmuseum.org/botany/search_mesoamerican.php, accessed 11/15/2015.Google Scholar
Hare, Timothy, Masson, Marilyn, and Russell, Bradley 2014 High-Density LiDAR Mapping of the Ancient City of Mayapan. Remote Sensing 6(9):90649085.CrossRefGoogle Scholar
Harmon, James M., Leone, Mark P., Prince, Stephen D., and Snyder, Marcia 2006 Lidar for Archaeological Landscape Analysis: A Case Study of Two Eighteenth-Century Maryland Plantation Sites. American Antiquity 71(4):649670.Google Scholar
Hutson, Scott R. 2015 Adapting LiDAR Data for Regional Variation in the tropics: A case study from the Northern Maya Lowlands. Journal of Archaeological Science: Reports 4:252263.Google Scholar
Instituto Nacional de Estadística Geografía e Informática (INEGI) 2002 Carta Topográfica Chetumal E16-4–7. Escala 1:250 000. INEGI, Aguascalientes.Google Scholar
Ismail, Zamri, Rahman, Muhammad Zulkarnain Abdul, Salleh, Mohd Radhie Mohd, and Razak, Abdul Yusof, Mohd 2015 Accuracy Assessment of LIDAR-Derived Elevation Value Over Vegetated Terrain in Tropical Region. Jurnal Teknologi 73(5).Google Scholar
Lewis, H. G., and Brown, M. 2001 A Generalized Confusion Matrix for Assessing Area Estimates from Remotely Sensed Data. International Journal of Remote Sensing 22(16):32233235.CrossRefGoogle Scholar
Lundell, Cyrus L. 1937 The Vegetation of Petén. Volume I. Carnegie Institution of Washington Publication 478. Carnegie Institution, Washington D.C. Google Scholar
Martínez, Esteban, Mario Sousa, S., and Álvarez, Clara Hilda Ramos 2001 Listados Florísticos de México. XXII. Región de Calakmul Campeche. Instituto de Biología, Universidad Nacional Autónoma de México, México, D.F. Google Scholar
Millard, Koreen, Burke, Charles, Stiff, Douglas, and Redden, Anna 2009 Detection of Low-Relief 18th-Century British Siege Trench Using LiDAR Vegetation Penetration Capabilities at Fort Beauséjour-Fort Cumberland National Historic Site, Canada. Geoarchaeology 24(5):576588.CrossRefGoogle Scholar
Miranda, Faustino 1958 Estudios Acerca de la Vegetación. In Los Recursos Naturales del Sureste y su Aprovechamiento, vol. 2, edited by Beltrán, E., pp. 215271. Instituto Mexicano de Recursos Naturales Renovables, A. C., México, D. F. Google Scholar
Ortner, Clive 2000 Sampling in Archaeology. Cambridge Manuals in Archaeology. Cambridge University Press, Cambridge.Google Scholar
Prufer, Keith M., Thompson, Amy E., Kennett, Douglas J. 2015 Evaluating Airborne LiDAR for Detecting Settlements and Modified Landscapes in Disturbed Tropical Environments at Uxbenka. Belize. Journal of Archaeological Science 57:113.Google Scholar
Reutebuch, Stephen E., McGaughey, Robert J., Anderson, Hans-Erik, and Carson, Ward W. 2003 Accuracy of a High-Resolution Lidar Terrain Model under a Conifer Forest Canopy. Canadian Journal of Remote Sensing 29(5):527535.Google Scholar
Rosenswig, Robert M., López-Torrijos, Ricardo, Antonelli, Caroline E., and Mendelsohn, Rebecca R. 2013 Lidar Mapping and Surface Survey of the Izapa State on the Tropical Piedmont of Chiapas, Mexico. Journal of Archaeological Science 40(3):14931507.Google Scholar
Rosenswig, Robert M., López-Torrijos, Ricardo, and Antonelli, Caroline E. 2014 Lidar Data and the Izapa Polity: New Results and Methodological Issues from Tropical Mesoamerica. Archaeological Anthropological Science 118.Google Scholar
Salleh, Mohd Mohd, Radhie, Ismail, Zamri, and Zulkarnain, Muhammad Rahman, Abdul 2015 Accuracy Assessment of Lidar-Derived Digital Terrain Model (Dtm) with Different Slope and Canopy Coier In Tropical Forest Region. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II–2-W2(1):183189.Google Scholar
Schiffer, Michael B., Sullivan, Alan P., and Klinger, Timothy C. 1978 The Design of Archaeological Surveys. World Archaeology 10(1):128.Google Scholar
Šprajc, Ivan 2008 Reconocimiento Arqueológicao el el Sureste del Estado de Campeche, Mexico: 1996–2005. Bar International Series 1742, Archaeopress, Oxford.Google Scholar
Štular, Benjamin, Kokalj, Žiga, Oštir, Krištof, and Nuninger, Laure 2012 Visualization of Lidar-Derived Relief Models for Detection of Archaeological Features. Journal of Archaeological Science 39(11):33543360.Google Scholar
Villalobos-Zapata, Guillermo J., and Vega, Jorge Mendoza (editors) 2010 La Biodiversidad en Campeche: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Gobierno del Estado de Campeche, Universidad Autónoma de Campeche, El Colegio de la Frontera Sur, México.Google Scholar
Von Schwerin, Jennifer, Richards-Rissetto, Heather, Remondino, Fabio, Spera, Maria Grazia, Auer, Michael, Billen, Nicolas, Loos, Lukas, Stelson, Laura, and Reindel, Markus 2016 Airborne LiDAR Acquisition, Post-Processing Accuracy-Checking for 3D WebGIS of Copan, Honduras. Journal of Archaeological Science: Reports 5:85104.Google Scholar