Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T11:34:22.788Z Has data issue: false hasContentIssue false

Implementing Photogrammetry in Three Bioarchaeological Contexts: Steps for In-Field Documentation

Published online by Cambridge University Press:  04 March 2019

Anna C. Novotny*
Affiliation:
Department of Sociology, Anthropology, and Social Work, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
*
(anna.novotny@ttu.edu, corresponding author)

Abstract

Human skeletal remains hold a wealth of information about past life-ways, but their documentation and recovery from archaeological contexts is challenging. Four challenges face bioarchaeological field work: poor skeletal preservation; complex mortuary traditions; sub-par excavation conditions; and excavation time limits. Poor preservation often prevents the collection of metric data from skeletons. This project tested whether a bioarchaeologist with basic photography skills and excavation equipment could address these challenges using photogrammetry. Photogrammetry was employed at the ancient Maya sites of Say Kah and Chan Chich, both located in northern Belize, to document human skeletal remains and their archaeological contexts. Steps are provided for implementing photogrammetry in the field, as well as addressing challenges for using the technique during burial documentation. This project produced only one adequate 3-D model and no metric data could be collected. Overall, photogrammetry seems to be a promising method for bioarchaeological research because it is low-cost, effective, and fairly straightforward to learn. The technique was faster than traditional line drawing, but sub-par excavation conditions and dark, small spaces hindered the creation of useful models. Photogrammetry provides an excellent alternative to traditional documentation addressing the challenges of poor skeletal preservation and holding potential for unraveling complex mortuary traditions.

Los restos óseos humanos contienen una gran cantidad de información sobre las formas de vida pasadas, pero su documentación y recuperación en contextos arqueológicos puede ser un desafío. Este artículo identifica cuatro desafíos que enfrenta el trabajo de campo bioarqueológico: la preservación esquelética deficiente; las tradiciones mortuorias complejas; las condiciones de excavación inferiores al estándar; y los tiempos limitados de excavación. Este proyecto examina como un bioarqueólogo con habilidades básicas de fotografía y equipo de excavación puede enfrentar estos desafíos empleando la fotogrametría. La fotogrametría se llevó a cabo en los sitios Mayas de Say Kah y Chan Chich, ambos ubicados en el norte de Belice, con el fin de documentar restos óseos humanos y sus contextos arqueológicos. Los espacios reducidos de las tumbas y las condiciones con poca luz durante la excavación impidieron la creación de buenas fotografías de los entierros de Say Kah; sin embargo, se pudo crear exitosamente un modelo tridimensional adecuado en un contexto mortuorio en Chan Chich. Se proporcionan los pasos para implementar la fotogrametría en el campo. En general, la fotogrametría es un método prometedor para la investigación bioarqueológica que vale la pena aprender, con planificación anticipada, para documentar restos en espacios pequeños y oscuros.

Type
How to Series
Copyright
Copyright 2019 © Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES CITED

LLC, Agisoft 2018 Agisoft PhotoScan User Manual: Professional Edition, Version 1.4. Electronic document, https://www.agisoft.com/, accessed March 1, 2018.Google Scholar
Alfsdotter, Clara, Papmehl-Dufay, Ludvig, and Victor, Helena 2018 A Moment Frozen in Time: Evidence of a Late Fifth-Century Massacre at Sandby Borg. Antiquity 92(362):421436.Google Scholar
Cignoni, Paolo, Corsini, Massimiliano, Dellepiane, Matteo, Ganovelli, Fabio, and Ranzuglia, Guido 2008 MeshLab: An Open-Source Mesh Processing Tool. In Sixth Eurographics Italian Chapter Conference, edited by Scarano, Vittorio, De Chiara, Rosario, and Erra, Ugo, pp. 129136. Eurographics Society, Geneva.Google Scholar
Cultural Heritage Imaging 2015 Photogrammetry. Electronic document http://culturalheritageimaging.org/Technologies/Photogrammetry/, accessed October 4, 2018.Google Scholar
De Reu, Jeroen, De Smedt, Phillipe, Herremans, Davy, Van Meirvenne, Marc, Laloo, Pieter, and De Clercq, Wim 2014 Introducing an Image-Based 3D Reconstruction Method in Archaeological Excavation Practice. Journal of Archaeological Science 41:251262.Google Scholar
Douglass, Matthew, Lin, Sam, and Chodoronek, Michael 2015 The Application of 3D Photogrammetry for In-Field Documentation of Archaeological Features. Advances in Archaeological Practice 3:136152.Google Scholar
Ducke, Benjamin, Score, David, and Reeves, Joseph 2011 Multiview 3D Reconstruction of the Archaeological Site at Weymouth from Image Series. Computer & Graphics 35:375382.Google Scholar
Falkingham, Peter L. 2016 Trying All the Free Photogrammetry. Electronic document, https://peterfalkingham.com/2016/09/14/trying-all-the-free-photogrammetry/, accessed October 2, 2018.Google Scholar
Fitzsimmons, James L. 2009 Death and the Classic Maya Kings. University of Texas Press, Austin.Google Scholar
Freiwald, Carolyn 2019 Excavation and Curation Strategies for Complex Burials in Tropical Environments. Advances in Archaeological Practice 7:1022.Google Scholar
Fuhrmann, Simon, Langguth, Fabian, and Goesele, Michael 2014 MVE—A Multi-View Reconstruction Environment. In Proceedings of the Eurographics Workshops on Graphics and Cultural Heritage, edited by Klein, Reinhard and Santos, Pedro, pp. 1118. Eurographics Association, Aire-la-Ville, Switzerland.Google Scholar
Furukawa, Yasutaka, and Ponce, Jean 2008 Accurate, Dense, and Robust Multi-View Stereopsis. Electronic document, https://drive.google.com/file/d/1LMzM5SLzFaC8YvFEqOP_ D5_iFn5NDGug/view, accessed October 1, 2018.Google Scholar
Galeazzi, Fabrizio 2016 Towards the Definition of Best 3D Practices in Archaeology: Assessing 3D Documentation Techniques for Intra-Site Data Recording. Journal of Cultural Heritage 17:159169.Google Scholar
Gallareta Cervera, Tomás, Houk, Brett A., and Palmer, Paisley 2017 The 2017 Investigations in the Upper Plaza at Chan Chich, Belize. In The 2017 Season of the Chan Chich Archaeological Project, edited by Houk, Brett A. and Novotny, Claire, pp. 3368. Papers of the Chan Chich Archaeological Project, Number 12. Department of Sociology, Anthropology, and Social Work, Texas Tech University, Lubbock.Google Scholar
Green, Susie, Bevan, Andrew, and Shapland, Michael 2014 A Comparative Assessment of Structure from Motion Methods for Archaeological Research. Journal of Archaeological Science 46:173181.Google Scholar
Katz, David, and Friess, Martin 2014 Technical Note: From Standard Digital Photography of Human Crania—A Preliminary Assessment. American Journal of Physical Anthropology 154:152158.Google Scholar
Koenig, Charles W., Willis, Mark D., and Black, Stephen L. 2017 Beyond the Square Hole: Application of Structure from Motion Photogrammetry to Archaeological Excavation. Advances in Archaeological Practice 5:5470.Google Scholar
Mallison, Heinrich 2013a Photogrammetry Tutorial 1: Equipment. Electronic document, https://dinosaurpalaeo.wordpress.com/2013/10/31/photogrammetry-tutorial-1-equipment/, accessed October 2, 2018.Google Scholar
Mallison, Heinrich 2013b Photogrammetry Tutorial 2: Picture Taking, General Remarks. Electronic document, https://dinosaurpalaeo.wordpress.com/2013/11/16/photogrammetry-tutorial-2-picture-taking-general-remarks/, accessed October 2, 2018.Google Scholar
Mallison, Heinrich, and Wings, Oliver 2014 Photogrammetry in Paleontology: A Practical Guide. Journal of Paleontological Techniques 12:131.Google Scholar
Mickleburgh, Hayley L., and Wescott, Daniel J. 2018 Controlled Experimental Observations on Joint Disarticulation and Bone Displacement of a Human Body in an Open Pit: Implications for Funerary Archaeology. Journal of Archaeological Science 20:158167.Google Scholar
Moulon, Pierre, Monasse, Pascal, and Marlet, Renaud 2012 Adaptive Structure from Motion with a contrario Model Estimation. In Computer Vision – ACCV 2012, edited by Lee, Kyoung Mu, Matsushita, Yasuyuki, Rehg, James M., and Hu, Zhanyi, pp. 257270. Lecture Notes in Computer Science, Vol. 7727. Springer, Berlin.Google Scholar
Moulon, Pierre, Monasse, Pascal, and Marlet, Renaud 2018 Open MVG. An Open Multiple View Geometry Library. Electronic document, https://github.com/openMVG/openMVG, accessed October 2, 2018.Google Scholar
Novotny, Anna C. 2017 Excavations of Structure C1, SubOperations UU and FFF. In Excavations at Say Kah 2017, edited by Jackson, Sarah E. and Brown, Linda A.. Manuscript on file, Department of Sociology, Anthropology, and Social Work, Texas Tech University, Lubbock.Google Scholar
Novotny, Anna C., Booher, Ashley, and Aquino, Valorie V. 2016 Bioarchaeological Analysis of Human Skeletons from Chan Chich, Belize. In The 2016 Season of the Chan Chich Archaeological Project, edited by Houk, Brett A., pp. 6780. Papers of the Chan Chich Archaeological Project, Number 11. Department of Sociology, Anthropology, and Social Work, Texas Tech University, Lubbock.Google Scholar
Novotny, Anna C., Gallereta Cervera, Tomás, Smith, Briana, and Kilgore, Gertrude 2017 Bioarchaeological Analysis of Human Skeletal Remains from Chan Chich, Belize. In The 2017 Season of the Chan Chich Archaeological Project, edited by Houk, Brett A. and Novotny, Claire, pp. 143156. Papers of the Chan Chich Archaeological Project, Number 12. Department of Sociology, Anthropology, and Social Work, Texas Tech University, Lubbock.Google Scholar
Parsons, Ted, and Harrod, Ryan P. 2017 Documenting Burials and Mortuary Context in the Field Using 3D Technology. Poster presented at the 86th Annual Meeting of the American Association of Physical Anthropologists. New Orleans, Louisiana.Google Scholar
Porter, Samantha T., Roussel, Morgan, and Soressi, Marie 2016 A Simple Photogrammetry Rig for the Reliable Creation of 3D Artifact Models in the Field. Advances in Archaeological Practice 4:7186.Google Scholar
Rupnik, Ewelina, Daakir, Mehdi, and Deseilligny, Marc Pierrot 2017 MicMic—a Free, Open-Source Solution for Photogrammetry. Open Geospatial Data, Software and Standards 2:14.Google Scholar
Sapirstein, Phillip 2016 Accurate Measurement with Photogrammetry at Large Sites. Journal of Archaeological Science 66:137145.Google Scholar
Scherer, Andrew K. 2015 Mortuary Landscapes of the Classic Maya: Rituals of Body and Soul. University of Texas Press, Austin.Google Scholar
Shervais, Katherine, and Dietrich, James 2016 Structure Motion (SfM) Photogrammetry Data Exploration and Processing Manual. Electronic document, http://unavco.org, accessed April 26, 2018.Google Scholar
Snavely, Noah, Seitz, Steven M., and Szeliski, Richard 2006 Photo Tourism: Exploring Photo Collections in 3D. ACM: Transactions on Graphics. 25(3):835846Google Scholar
Schönberger, Johannes L., and Frahm, Jan-Michael 2016 Structure-from-Motion Revisited. Electronic document, culturalheritageimaging.org, accessed October 1, 2018.Google Scholar
Shott, Michael J., and Trail, Brian W. 2010 Exploring New Approaches to Lithic Analysis: Laser Scanning and Geometric Morphometrics. Lithic Technology 35(2):195220.Google Scholar
Tokovinine, Alexandre, and Estrada-Belli, Francisco 2017 From Stucco to Digital: Topometric Documentation of Classic Maya Facades at Holmul. Digital Applications in Archaeology and Cultural Heritage 6:1828.Google Scholar
Villa, Chiara, Flies, Mitchell J., and Jacobsen, Christina 2018 Forensic 3D Documentation of Bodies: Simple and Fast Procedure for Combining CT Scanning with External Photogrammetry Data. Journal of Forensic Radiology and Imaging 12:e2e7.Google Scholar
Welsh, William B.M. 1988 An Analysis of Classic Lowland Maya Burials. BAR International Series 409. British Archaeological Reports, Oxford.Google Scholar
Wilhelmson, Helene, and Dell'Unto, Nicolo 2015 Virtual Taphonomy: A New Method Integrating Excavation and Postprocessing in an Archaeological Context. American Journal of Physical Anthropology 157:305321.Google Scholar
Willis, Mark A., Koenig, Charles W., Black, Stephen L., and Castaneda, Amanda M. 2016 Archaeological 3D Mapping: The Structure from Motion Revolution. Journal of Texas Archaeology and History 3:136.Google Scholar
Wright, Lori, and Vásquez, Mario A. 2003 Estimating the Length of Incomplete Long Bones: Forensic Standards from Guatemala. American Journal of Physical Anthropology 120:23–3-251.Google Scholar
Wu, Changchang 2011 VisualSFM: A Visual Structure from Motion System. Electronic document, http://ccwu.me/vsfm/, accessed October 1, 2018.Google Scholar