Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T05:13:37.577Z Has data issue: false hasContentIssue false

The Use and Refinement of Neutron Imaging Techniques for Archaeological Artifacts

Published online by Cambridge University Press:  16 January 2017

Krysta Ryzewski
Affiliation:
Department of Anthropology, Wayne State University, 3054 F/AB, 656 W. Kirby, Detroit, MI 48226 (Krysta.Ryzewski@wayne.edu)
Hassina Z. Bilheux
Affiliation:
Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (bilheuxhn@ornl.gov)
Susan N. Herringer
Affiliation:
School of Engineering, Brown University, Providence, RI 02906 (Susan_Herringer@brown.edu)
Jean-Christophe Bilheux
Affiliation:
Neutron Data Analysis and Visualization, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Lakeisha Walker
Affiliation:
Research Reactor Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (walkerl@ornl.gov)
Brian W. Sheldon
Affiliation:
School of Engineering, Brown University, Providence, RI 02906 (Brian_Sheldon@brown.edu)

Abstract

Neutron imaging is a nondestructive application capable of producing two- and three-dimensional maps of archaeological objects’ external and internal structure, properties, and composition. This report presents the recent development of neutron imaging data collection and processing methods at Oak Ridge National Laboratory (ORNL), which have been advanced, in part, by information gathered from the experimental imaging of 25 archaeological objects over the past three years. The dual objectives of these imaging experiments included (1) establishing the first methodological procedures for the neutron imaging of archaeomaterials involving the CG-1D beamline and (2) further illustrating the potential of neutron imaging for archaeologists to use in the reverse engineering of ancient and historical objects. Examples of objects imaged in two and three dimensions are provided to highlight the application’s strengths and limitations for archaeological investigations, especially those that address ancient and historic technologies, materials science, and conservation issues.

L’imagerie avec les neutrons (ou imagerie neutronique) est une application non-destructive et capable de produire des cartes de structures externes et internes, de propriétés et composition, en 2 et 3 dimensions d’objets archéologiques. Ce rapport présente l’évolution récente de l’acquisition des images à neutrons, des méthodes de traitement d’image au Laboratoire National d’Oak Ridge (ORNL), qui ont été avancées, en partie, par des informations recueillies par les mesures expérimentales de 25 objets archéologiques au cours des trois dernières années. L’objectif double de ces expériences d’imagerie était le suivant: (1) l’établissement des premières procédures méthodologiques pour l’imagerie avec les neutrons des matériaux archéologiques sur la ligne de faisceau CG-1D et la future ligne VENUS, et (2) la démonstration du potentiel de l’imagerie neutronique pour aider les archéologues à pouvoir étudier la rétroingénierie d’objets antiques et historiques. Des exemples d’objets imagés en deux et trois-dimensions sont décrits dans cet article afin de mettre en évidence les avantages et inconvénients de l’imagerie neutronique pour les recherches archéologiques, notamment celles qui traitent des technologies antiques et historiques, la science des matériaux, et des problèmes de conservation.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Anderson, Ian S., McGreevy, Robert L., and Bilheux, Hassina Z. (editors) 2009 Neutron Imaging and Applications: A Reference for the Imaging Community. New York, Springer.Google Scholar
Andreani, Carla, Gorini, Giuseppe, and Materna, Thomas 2009 Novel Neutron Imaging Techniques for Cultural Heritage Objects. In Neutron Imaging and Applications: A Reference for the Imaging Community, edited by Anderson, Ian S., McGreevy, Robert L., and Bilheux, Hassina Z., pp. 229252, Springer, New York.Google Scholar
Burca, Genoveva, James, Jon A., Kockelmann, Winfried, Fitzpatrick, M.E., Zhang, Shu Yan, Hovind, J., and van Langh, Robert 2011 A New Bridge Technique for Neutron Tomography and Diffraction Measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 651(1):229235.CrossRefGoogle Scholar
de Beer, Frikkie C., Botha, Hazel, Ferg, Ernst, Grundlingh, Retha, and Smith, A. 2009 Archaeology Benefits from Neutron Tomography Investigations in South Africa. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 605(1):167170.CrossRefGoogle Scholar
Deschler-Erb, Eckhard, Lehmann, Eberhard H., Vontobel, Peter, Hartmann, Stefan, and Pernet, L. 2004 The Complementary Use of Neutrons and X-rays for the Non-Destructive Investigation of Archaeological Objects from Swiss Collections. Archaeometry, 46:647661.Google Scholar
Dierick, Manuel 2005 Tomographic Imaging Techniques Using Cold and Thermal Neutron Beams. Unpublished Ph.D. dissertation, Department of Physics and Astronomy, Faculty of Sciences, Universiteit Gent.Google Scholar
Festa, Giulia, Caroppi, Paola A., Filabozzi, Alessandra, Andreani, Carla, Arancio, M.L., Triolo, Roberto, Lo Celso, Fabrizio, Benfante, Valerio, and Imberti, Silvia 2008 Composition and Corrosion Phases of Etruscan Bronzes from Villanovan Age. Measurement Science and Technology 19(3).CrossRefGoogle Scholar
Fiori, Fabrizio, Giunta, Giuseppe, Hilger, Andre, Kardjilov, Nikolay, and Rustichelli, Franco 2006 Non-Destructive Characterization of Archaeological Glasses by Neutron Tomography. Physica B: Physics of Condensed Matter 385:12061208.Google Scholar
Joukowsky, Martha S. 1998 Petra Great Temple Volume I: Brown University Excavations 1993-1997. Brown University Petra Exploration Fund, Providence, RI.Google Scholar
Kardjilov, Nickolay, Manke, Ingo, Hilger, Andre, Williams, Scott, Strobl, Markus, Woracek, Robin, Boin, Mirko, Lehmann, Eberhard, Penumadu, Dayakar, and Banhart, John 2012 Neutron Bragg-Edge Mapping of Weld Seams. International Journal of Materials Research, 103:151154.CrossRefGoogle Scholar
Kockelmann, Winifred, Frei, Gabriel, Lehmann, Eberhard H., Vontobel, Peter, and Santisteban, Javier R. 2007 Energy-Selective Neutron Transmission Imaging at a Pulsed Source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 578(2):421-434.Google Scholar
Lang, Janet, and Middleton, Andrew 2005 Radiography of Cultural Material, 3. 2nd ed., Elsevier, Burlington.Google Scholar
Lehmann, Eberhard 2006 Scientific Reviews: Using Neutron Imaging Methods for Non-Invasive Investigation of Museum Objects. Neutron News 17:22.CrossRefGoogle Scholar
Lehmann, Eberhard 2009 Neutron Imaging Methods and Applications. In Neutron Applications in Earth, Energy, and Environmental Sciences, edited by Liang, L., Rinaldi, R., Schober, H., pp. 319350, Springer, New York.Google Scholar
Lehmann, Eberhard, and Pleinert, Helena 1998 The New Neutron Radiography Station at the Spallation Source, SINQ, Insight 40:192194.Google Scholar
Lehmann, Eberhard, Deschler-Erb, Eckhard, and Ford, A. 2010 Neutron Tomography as a Valuable Tool for the Non-Destructive Analysis of Historical Bronze Sculptures. Archaeometry, 52:272285.Google Scholar
Lehmann, Eberhard, Hartmann, Stefan, Speidel, Markus O. 2010 Investigation of the Content of Ancient Tibetan Metallic Buddha Statues by Means of Neutron Imaging Methods. Archaeometry, 52:416428.Google Scholar
Peetermans, Stevens, van Langh, Robert, Lehmann, Eberhard, and Pappot, Arie 2012 Quantification of the Material Composition of Historical Copper Alloys by Means of Neutron Transmission Measurements. Journal of Analytical Atomic Spectrometry, 27:16741679.Google Scholar
Penumadu, Dayakar 2009 Material Science and Engineering with Neutron Imaging. In Neutron Imaging and Applications: A Reference for the Imaging Community, edited by Anderson, Ian S., McGreevy, Robert L., and Bilheux, Hassina Z., pp. 209228, Springer, New York.Google Scholar
Prudêncio, Maria Isabel, Pereira, Marco Antonio Stanojev, Marques, José G., Dias, Maria Isabel, Esteves, Lurdes, Burbidge, Christopher I., Trindade, Maria J., and Albuquerque, Mestre Beatriz 2012 Neutron Tomography for the Assessment of Consolidant Impregnation Efficiency in Portuguese Glazed Tiles (16th and 18th centuries). Journal of Archaeological Science 39:964969.CrossRefGoogle Scholar
Ryzewski, Krysta, Herringer, Susan N., Bilheux, Hassina Z., Walker, Lakeisha, Sheldon, Brian W., Bilheux, Jean-Christophe, Finocchiaro, Vincenzo, and Voisin, Sophie 2013 Neutron Imaging of Archaeological Bronzes at the Oak Ridge National Laboratory. Physics Procedia, 43:343351.Google Scholar
Santisteban, Javier R., Edwards, Lyndon, Fitzpatrick, Mike E., Steuwer, Axel, Withers, Philip J., Daymond, Mark R., Johnson, Michael W., Rhodes, Nigel, Schooneveld, Erik M. 2002 Strain Imaging by Bragg Edge Neutron Transmission. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 481(1):765768.Google Scholar
Schillinger, Burkhard 1996 Three-Dimensional Computer Tomography with Thermal Neutrons at FRM Garching. Journal of Neutron Research 4:5763.CrossRefGoogle Scholar
Shatokha, Voldoymyr, Korobeynikov, Iurii, Maire, Eric, and Adrien, Jerome 2009 Application of Three-Dimensional X-ray Tomography to Investigation of Sinter Mixture Granules. Iron and Steelmaking 36:416420.Google Scholar
Tout, R.E., Gilboy, Walter B., and Clark, A. J. 1980 The Use of Computerized X-ray Tomography for the Non-Destructive Examination of Archaeological Objects. In Proceedings of the 18th International Symposium on Archaeometry and Archaeological Prospection, Bonn, 14–17 March 1978, pp. 608616. Rheinland-Verlag, Köln.Google Scholar
van Langh, Robert, James, Jon, Burca, Genoveva, Kockelmann, Winfried, Zhang, Shu Yang, Lehmann, Eberhard, Estermann, Mirko, and Pappot, Arie 2011 New Insights into Alloy Compositions: Studying Renaissance Bronze Statuettes by Combined Neutron Imaging and Neutron Diffraction Techniques. Journal of Analytical Atomic Spectrometry 26:949958.Google Scholar
van Langh, Robert, Lehmann, Eberhard, Hartmann, Stefan, Kaestner, Anders, and Scholten, Frits 2009 The Study of Bronze Statuettes with the Help of Neutron-Imaging Techniques. Analytical and Bioanalytical Chemistry 395:19491959.Google Scholar