Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T22:59:11.034Z Has data issue: false hasContentIssue false

Use of Photogrammetry for Non-Disturbance Underwater Survey

An Analysis of In Situ Stone Anchors

Published online by Cambridge University Press:  16 January 2017

Carrie Fulton
Affiliation:
Department of Classics, Cornell University, Ithaca NY 14851, USA (cea66@cornell.edu)
Andrew Viduka
Affiliation:
Heritage Branch, Department of the Environment, Australian Government, Canberra ACT 2601, AUS (andrew.viduka@environment.gov.au)
Andrew Hutchison
Affiliation:
School of Design and Art, Curtin University, Bentley WA 6102, AUS (a.hutchison@curtin.edu.au)
Joshua Hollick
Affiliation:
HIVE, Curtin University, Bentley WA 6102, AUS (joshua.hollick@curtin.edu.au)
Andrew Woods
Affiliation:
HIVE, Curtin University, Bentley WA 6102, AUS (a.woods@curtin.edu.au)
David Sewell
Affiliation:
University of Edinburgh, Edinburgh EH8 9YL, UK (david_sewell@btconnect.com)
Sturt Manning
Affiliation:
Department of Classics, Cornell University, Ithaca NY 14851, USA (sm456@cornell.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stone anchors comprise a significant portion of observable underwater cultural heritage in the Mediterranean and provide evidence for trade networks as early as the Bronze Age. Full documentation of these anchors, however, often requires their removal from their underwater environment, especially to calculate mass. We offer a methodology for using photogrammetry to record stone anchors still in situ and calculate their approximate mass. We compare measurements derived using measuring tapes with those derived using two different software programs for photogrammetric analysis, PhotoModeler Scanner (Eos Systems, Inc.) and PhotoScan Pro (Agisoft). First, we analyze stone anchors that had previously been removed from the underwater environment to establish a reference methodology. Next, we implement this methodology in an underwater survey off the southern coastline of Cyprus. Linear measurements for both programs correlate closely with those attained via measuring tape. The resulting estimates of volume of anchors in situ and on land are slightly greater using the photogrammetric methodology than the reference volumes obtained using a water displacement methodology. Overall, as an analytical tool, this methodology generates detailed surface information in minimal time underwater and preserves data for future analysis without necessitating the removal of the anchor from its underwater environment.

Anclas de piedra forman una parte importante del patrimonio cultural subacuático observable en el Mediterráneo y proporcionan evidencia de las redes comerciales ya en la Edad del Bronce. La documentación completa de estas anclas, sin embargo, a menudo requiere la eliminación de su entorno bajo el agua, sobre todo para adquirir masa. Ofrecemos una metodología para el uso de la fotogrametría para grabar anclas de piedra todavía in situ y calcular su masa aproximada. Comparamos las mediciones obtenidas usando cintas de medición con los que se derivan utilizando dos programas de software diferentes para el análisis fotogramétrico, PhotoModeler escáner (Eos Systems, Inc.) y PhotoScan Pro (Agisoft). En primer lugar, se analizan las anclas de piedra que han sido previamente retirados del medio ambiente bajo el agua para establecer una metodología de referencia. A continuación, ponemos en práctica esta metodología en una encuesta bajo el agua frente a la costa sur de Chipre. Mediciones lineales para ambos programas se correlacionan estrechamente con los obtenidos a través de una cinta de medir. Los volúmenes resultantes de anclajes in situ y en la tierra son ligeramente mayor utilizando la metodología fotogramétrico que los volúmenes de referencia obtenidos utilizando una metodología de desplazamiento de agua. En general, como una herramienta analítica, esta metodología genera información detallada superficie en un tiempo mínimo bajo el agua y conserva los datos para el análisis futuro sin necesidad de la eliminación del anclaje de su entorno bajo el agua.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2016

References

References Cited

Andreou, Georgia, and Sewell, David 2015. Tochni-Lakkia Revealed: Reconsidering Settlement Patterns in the Vasilikos and Maroni Valleys, Cyprus. In PoCA (Postgraduate Cypriot Archaeology) 2012, edited by Matthäus, Hartmut, Morstadt, Bärbel, and Vonhoff, Christian, pp. 198219. Cambridge Scholars Publishing, Newcastle.Google Scholar
Ballard, Robert, Hiebert, Fredrik, Coleman, Dwight, Ward, Cheryl, Smith, Jennifer, Willis, Kathryn, Foley, Brendan, Croff, Katherine, Major, Candace, and Torre, Francesco 2001. Deepwater Archaeology of the Black Sea: The 2000 Season at Sinop, Turkey. American Journal of Archaeology 105:607623.Google Scholar
Barazzetti, Luigi, Binda, Luigia, Scaioni, Marco, and Taranto, Paolo 2011. Photogrammetric Survey of Complex Geometries with Low-Cost Software: Application to the “G1” Temple in Myson, Vietnam. Journal of Cultural Heritage 12:253262.Google Scholar
Bell, Frederic 2007. Basic Environmental and Engineering Geology. Whittles Publishing Limited, Dunbeath.Google Scholar
Brutto, M., and Meli, Paola 2012. Computer Vision Tools for 3D Modelling in Archaeology. International Journal of Heritage in the Digital Era 1:16.Google Scholar
Cobb, Fiona 2009. Structural Engineer’s Pocket Book. 2nd ed. Butterworth-Heinemann, London.Google Scholar
Dall’Asta, E., and Roncella, R. 2014. A Comparison of Semiglobal and Local Dense Matching Algorithms for Surface Reconstruction. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-5:187194.Google Scholar
Demesticha, Stella, Skarlatos, Dimitrios, and Neophytou, Andonis 2014. The 4th-Century B.C. Shipwreck at Mazotos, Cyprus: New Techniques and Methodologies in the 3D Mapping of Shipwreck Excavations. Journal of Field Archaeology 39:134150.Google Scholar
Reu De, Jeroen, Plets, Gertjan, Verhoeven, Geert, De Smedt, Philippe, Bats, Machteld, Cherretté, Bart, De Maeyer, Wouter, Deconynck, Jasper, Herremans, Davy, Laloo, Pieter, Van Meirvenne, Marc, and De Clercq, Wim 2013. Towards a Three-dimensional Cost-Effective Registration of the Archaeological Heritage. Journal of Archaeological Science 40:11081121.Google Scholar
Foley, Brendan, Dellaporta, Katerina, Sakellariou, Dimitris, Bingham, Brian, Camilli, Richard, Eustice, Ryan, and Evagelistis, Dionysis 2009. The 2005 Chios Ancient Shipwreck Survey: New Methods for Underwater Archaeology. Hesperia 78:269305.Google Scholar
Frost, Honor 1963. From Rope to Chain: On the Development of Anchors in the Mediterranean. The Mariner’s Mirror 49: 120.Google Scholar
Frost, Honor 1970. Bronze Age Stone Anchors from the Eastern Mediterranean. The Mariner’s Mirror 56: 377394.Google Scholar
Green, Jeremy, and Gainsford, Matthew 2003. Evaluation of Underwater Surveying Techniques. International Journal of Nautical Archaeology 32:252261.Google Scholar
Green, Jeremy, Matthews, Sheila, and Turanli, Tufan 2002. Underwater Archaeological Surveying using PhotoModeler, VirtualMapper: Different Applications for Different Problems. International Journal of Nautical Archaeology 31:283292.Google Scholar
Kersten, Thomas, and Lindstaedt, Maren 2012. Image-Based Low-Cost Systems for Automatic 3D Recording and Modelling of Archaeological Finds and Objects. In Progress in Cultural Heritage Preservation 4th International Conference, EuroMed 2012: Limassol, Cyprus, October 29-November 3, 2012, edited by Ioannides, Marinos, Fritsch, Dieter, Leissner, Johanna, Davies, Rob, Remondino, Fabio, and Caffo, Rossella, pp. 110. Springer-Verlag, Berlin.Google Scholar
Kocabaş, Ufuk (editor) 2012. The “Old Ships” of the “New Gate” = Yenikapı’nın eski gemileri. 2nd ed. Ege Yayınları, İstanbul.Google Scholar
Koutsoudis, Anestis, Vidmar, Blaž, Ioannakis, George, Arnautoglou, Fotis, Pavlidis, George, and Chamzas, Christodoulos 2014. Multi-Image 3D Reconstruction Data Evaluation. Journal of Cultural Heritage 15:7379.Google Scholar
Kwasnitschka, Tom, Hansteen, Thor H., Devey, Colin W., and Kutterolf, Steffen 2013. Doing Fieldwork on the Seafloor: Photogrammetric Techniques to Yield 3D Visual Models from ROV Video. Computers & Geosciences 52:218226.Google Scholar
Luhmann, Thomas, Robson, Stuart, Kyle, Stephen, and Boehm, Jan 2013. Close-Range Photogrammetry and 3D Imaging. 2nd ed. De Gruyter, Berlin.Google Scholar
McCarthy, John 2012. Undesignated Site Assessment: Sicar Rock, Dunbar, East Lothian. Unpublished fieldwork report for Wessex Archaeology on behalf of Historic Scotland. Electronic Document, http://orapweb.rcahms.gov.uk/wp/00/WP000743.pdf, accessed October 15, 2015.Google Scholar
McCarthy, John, and Benjamin, Jonathan 2014. Multi-Image Photogrammetry for Underwater Archaeological Site Recording: An Accessible, Diver-Based Approach. Journal of Maritime Archaeology 9:95114.Google Scholar
McCaslin, Dan 1980. Stone Anchors in Antiquity: Coastal Settlements and Maritime Trade-Routes in the Eastern Mediterranean ca. 1600–1050 B.C. P. Åströms, Göteborg.Google Scholar
Manning, Sturt W., Bolger, Diane L., Ponting, M.J., Steel, Louise, and Swinton, A. 1994. Maroni Valley Archaeological Survey Project: Preliminary Report on 1992–1993 Seasons. Report of the Department of Antiquities, Cyprus 1994:345367.Google Scholar
Manning, Sturt W., and Conwell, D.H. 1992. Maroni Valley Archaeological Survey Project: Preliminary Report on the 1990–1991 Field Seasons. Report of the Department of Antiquities, Cyprus 1992:271283.Google Scholar
Manning, Sturt W., Sewell, David, and Herscher, Ellen 2002. Late Cypriot I A Maritime Trade in Action: Underwater Survey at Maroni Tsaroukkas and the Contemporary East Mediterranean Trading System. The Annual of the British School at Athens 97:97162.Google Scholar
Martorelli, Massimo, Pensa, Claudio, and Speranza, Domenico 2014. Digital Photogrammetry for Documentation of Maritime Heritage. Journal of Maritime Archaeology 9:8193.Google Scholar
Oates, Joseph A. H. 1998. Lime and Limestone: Chemistry and Technology, Production and Uses. Wiley-VCH, New York.Google Scholar
Olson, Brandon, Placchetti, Ryan A., Quartermaine, Jamie, and Killebrew, Ann E. 2013. The Tel Akko Total Archaeology Project (Akko, Israel): Assessing the Suitability of Multi-scale 3D Field Recording in Archaeology. Journal of Field Archaeology 38:244262.Google Scholar
Pollefeys, Marc, Van Gool, Luc, Vergauwen, Maarten, Cornelis, Kurt, Verbiest, Frank, and Tops, Jan 2003. 3D Recording for Archaeological Fieldwork. IEEE Computer Graphics and Applications 23:2027.Google Scholar
Remondino, Fabio, Spera, Maria Grazia, Nocerino, Erica, Menna, Fabio, and Nex, Francesco 2014. State of the Art in High Density Image Matching. The Photogrammetric Record 29: 144166.CrossRefGoogle Scholar
Sedlazeck, Anne, Köser, Kevin, and Koch, Reinhard 2010. Supporting Underwater Archaeology by 3D Reconstruction from Underwater Images. Skyllis: Zeitschrift für Unterwasserarchäologie 10:179186.Google Scholar
Shaw, Joseph 1995. Two Three-Holed Stone Anchors from Kommos, Crete: Their Context, Type and Origin. International Journal of Nautical Archaeology 24:279291.Google Scholar
Skarlatos, Dimitrios, Demesticha, Stella, and Kiparissi, Stavroula 2012. An ‘Open’ Method for 3D Modelling and Mapping in Underwater Archaeological Sites. International Journal of Heritage in the Digital Era 1:124.Google Scholar
Antón, Tejerina, Daniel, , Marqués, Joaquín Bolufer i, Bebia, Marco Aurelio Esquembre, and Pérez, José Ramón Ortega 2012. Documentación 3D de pinturas rupestres con Photomodeler Scanner: los motivos esquemáticos de la Cueva del Barranc del Migdia (Xàbia, Alicante). Virtual Archaeology Review 3:6467.Google Scholar
Telem, Gili, and Filin, Sagi 2010. Photogrammetric Modeling of Underwater Environments. ISPRS Journal of Photogrammetry and Remote Sensing 65:433444.Google Scholar
Tóth, János Attila 2002. Composite Stone Anchors in the Ancient Mediterranean. Acta Archaeologica Academiae Scientiarum Hungaricae 53:85118.Google Scholar
Verhoeven, Geert 2011. Taking Computer Vision Aloft – Archaeological Three-Dimensional Reconstructions from Aerial Photographs with PhotoScan. Archaeological Prospection 18:6773.Google Scholar
Wachsmann, Shelley 1998. Seagoing Ships and Seamanship in the Bronze Age Levant. Texas A&M University Press, College Station, Texas.Google Scholar
Zapassky, Elena, Finkelstein, Israel, and Beneson, Itzhak 2009. Computing Abilities in Antiquity: The Royal Judahite Storage Jars as a Case-study. Journal of Archaeological Method and Theory 16:5167.Google Scholar