Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T06:11:30.310Z Has data issue: false hasContentIssue false

Analysis of X-Ray Diffraction Scans of Poorly Crystallized Semrcrystallkve Polymers

Published online by Cambridge University Press:  06 March 2019

N. Sanjeeva Murthy*
Affiliation:
Research and Technology, AlliedSignal Inc. P.O. Box 1021, Morristown, New Jersey 07962
Get access

Abstract

X-ray diffraction (XRD) scans of many semicrystalline polymers, in which noncrystalline (amorphous) phases with varying degrees of order coexist with more than one crystalline phases, are usually not well resolved. Resolution of such data can be enhanced by deconvolving the effect of size broadening using maximum entropy methods. The use of resolution-enhanced XRD scans for studying the order in the noncrystalline (amorphous) domains and for studying small differences in the crystalline regions in poorly crystallized polymers is illustrated with examples from polyamides and polyesters. Crystallinity in poorly crystallized polymers is determined using an amorphous template obtained by analyzing highly crystalline polymers. The degree of order in the noncrystalline regions is evaluated from the changes in the shape and the position of the amorphous scattering. It is suggested that these procedures can be a part of the documentation of laboratory procedures required for ISO (International Organization for Standards) certification.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alexander, L. E., “ X-ray Diffraction methods in Polymer Science”, Wiley- Interscience, New York (1969).Google Scholar
2. Balta-Calleja, F. J. and Vonk, C. J., “X-ray Scattering from Synthetic Polymers”, Elsevier, New York (1989).Google Scholar
3. Fu, Y., Annis, B., Boller, A., Jin, Y. and Wunderlich, B., J. Polym. Sci. Polym. Phys., 32, 2289 (1994).Google Scholar
4. Hermans, P. H. and Weidinger, A., J. Polym. Sci. 4, 709 (1949).Google Scholar
5. Krimm, S. and Tobolsky, A. V., J. Polym. Sci., 7, 57 (1951).Google Scholar
6. Ruland, W., Acta Cryst., 14, 1180 (1961).Google Scholar
7. Vonk, C. G., J. Appl. Cryst., 6, 148 (1973).Google Scholar
8. Murthy, N. S. and Minor, H., Polymer, 31, 996 (1990).Google Scholar
9. Polizzi, S., Fagherazzi, G., Benedetti, A. and Battagliarin, M., J. Appl. Cryst, 23, 359 (1990).Google Scholar
10. Rabiej, S., Eur. Polym. J. 27, 947 (1991).Google Scholar
11. Murthy, N. S.. Minor, H., Bednarczyk, C. and Krimm, S., Macromolecules, 26, 1712 (1993).Google Scholar
12. Rosenfeld, Y., Phys. Rev. A, 42, 5978 (1990).Google Scholar
13. Murthy, N. S. and Minor, H., Polymer, 36, 2499 (1995).Google Scholar
14. Murthy, N. S., Zero, K. and Minor, H., Macromolecules, 27, 1484 (1994).Google Scholar
15. Daubeny, R. P., Bunn, C. W., Brown, C. W., Prco. R. Soc. London, A226, 531 (1954).Google Scholar
16. Murthy, N. S., Correale, S. T. and Minor, H., Macromolecules, 24, 1185 (1991).Google Scholar
17. Murthy, N. S., Minor, H., Akkapeddi, M. K. and Van Buskirk, B., J. Appl. Polym. Sci., 41. 2265 (1990).Google Scholar