Published online by Cambridge University Press: 06 March 2019
Real time observations of the YBa2Cu3O7-δ (123) melting process by high temperature XRD and optical microscopy reveal a reaction sequence which does not correspond well with the literature. CO2 gas, present in the air, reacts with 123 to produce the Y2CU2O5 phase. This reaction begins well below 800°C and persists up to 970°C when BaCuO2 begins to form. The previously unreported BaCuO2 reaction occurs in either air or oxygen and this phase grows at the expense of the 123 until both rapidly disappear at 1050°C with the appearance of Y2B2CuO5 (211), Formation of Y2O3 from the 211 melt occurs more slowly, beginning at 1150°C. Dynamic 00ℓ orientation has been observed at 950°C upon cooling from the melt. The orientationa) growth is believed to be a surface tension dependent, liquid assisted sintering reaction.