Published online by Cambridge University Press: 06 March 2019
Gas flow proportional counters for the detection of soft X-rays were introduced about ten years ago. These detectors offered the advantages of high sensitivity, good energy discrimination qualities and the ability to handle high counting rates. Since that time they have been used for ultra-soft and harder X-rays as well, both as detectors in standard spectrographic instruments and as energy discriminating instruments themselves in various so-called nondispersive applications. Depending upon the particular instrumental application, however, their use has led to considerable complication of the associated electronic circuitry in order to realize their advantages. For the most effective use of these counters (and of sealed proportional counters as well) it is necessary to have a clear understanding of the effect of various design parameters and operating conditions on their performance. The dependence of the shape of the pulse height distribution on the operating voltage, pressure and counting rate is described as a function of the energy of the radiation detected and the nature of the gas. Stability requirements on. counter tube high voltage supplies and operating pressure are discussed. Shifts of pulse height distributions toward smaller pulse sizes with increasing counting rate are described and the dependence of these shifts on the various parameters and on wavelength are discussed. Techniques for eliminating the shifts and the implications of these techniques for the associated electronics are described.