Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T20:19:14.992Z Has data issue: false hasContentIssue false

The Effect of Small Additions of Magnesium on the Preprecipitation Behavior of Al-Zn Alloys

Published online by Cambridge University Press:  06 March 2019

Robert W. Gould*
Affiliation:
University of Florida Gainesville, Florida
Get access

Abstract

Magnesium has been shown to have a marked effect upon preprecipitation processes occurring in aluminum-13 wt.% zinc alloys containing 0.025, 0.098, 0.17, 0.19, 0.23, and 0.27 wt.% magnesium. X-ray small-angle scattering and resistance measurements have been used to monitor the rate of growth of Guinier-Preston zones in quenched foils and wires. The following results have been obtained: (a) small additions of magnesium noticeably decrease the rate of growth of G-P zones but the final zone size reached in the magnesium containing alloys is generally larger than in Al-Zn alloys quenched and aged under identical conditions; (b) the general pattern of preprecipitation found in Al-Zn alloys is not seriously changed by these small additions of magnesium; (c) the dependence of the rate of preprecipitation on quenching temperature is shown to be a function of magnesium content and aging temperature; (d) the dependence of the rate of preprecipitation on aging temperature is influenced by the range of aging temperature, magnesium content, and the quenching temperature.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Federighi, T., “Quenched-in Vacancies and Rate of Formation of Zones in Aluminum Alloys,” Acta Met. 6: 379, 1958.Google Scholar
2. Seta, F., L'etat solida, Brussels, 1952, p. 405.Google Scholar
3. Panseri, C. and Federighi, T., “A Resistometric Study of Pre-Precipitation in Al-10% Zn,” Acta Met. 8: 217, 1960.Google Scholar
4. Turnbull, D., Rosenbaum, H. S., and Treaftis, H. N., “Kinetics of Clustering in Some Aluminum Alloys,” Acta Met. 8: 277, 1960.Google Scholar
5. Guinier, A., Métaux Corrosion 18: 209, 1943.Google Scholar
6. Jan, J. P., “Small Angle X-ray Scattering from Precipitation in Cold-Worked Al-Ag and Al-Zn,” J. Appl. Phys. 26: 1291, 1955.Google Scholar
7. Gerald, V. and Schwfiizer, W., “Die kinetik von Entm is Chungs-vorgângen in iibersattigen Al—Zn Mischkristallen,” Zeitschrift Metallkunde 52: 76, 1961.Google Scholar
8. Meiah Handbook, American Society for Metals, Cleveland, Ohio, 1948.Google Scholar
9. Herenguel, J. and Chaudron, G., Metaux Corrosion 18: 30, 1943.Google Scholar
10. Schmabried, H. and Gerold, V., “Rontgenographische untersuchungen iiber die auschartung einer Ahtminum-Magnesium-Zink Legiemrtg,” Zeitschrift Metallkunde 49: 291, 1958.Google Scholar
11. Gerold, V. and Haberkorn, H., “Rontgenographische untersuchungen der Kaltauschartung von Aluminum-Magnesium-Kupfer und Aluminum-Magnesium-Zink Legierungen,’ Zeitschrift Metallkunde 50: 568, 1959.Google Scholar
12. Guinier, A., “Heterogeneities in Solid Solutions,” in: Advances in Solid State Physics, Vol. 9, Academic Press Inc., New York, 1960, p. 293.Google Scholar
13. Polmear, I. J., “The Aging Characteristics of Ternary Aluminum—Zinc—Magnesium Alloys,” J. Inst. Metals 86: 113, 1957-58.Google Scholar
14. Polmear, I. J., “The Upper Temperature Limit of Stability of G.P. Zones in Ternary Aluminum—Zinc-Magnesium Alloys,” J. Inst. Metals 87: 24, 1958-59.Google Scholar
15. Panseri, C., Gatto, F., and Federighi, T., “Interaction Between Solute Mg Atoms and Vacancies in Aluminum,” Acta Met. 6: 198, 1958.Google Scholar
16. Fink, W. L. arid Willey, L. A., “Equilibrium Relationships in Al-Zn-Mg Alloys of High Purity,” Trans. AIME 124: 78, 1937.Google Scholar
17. Panseri, C. and Federighi, T., “Evidence for the Interaction Between Mg Atoms and Vacancies in Al-Zn 10%-Mg0.1% Alloy,” Acta Met. 11: 575, 1963.Google Scholar
18. Bartsch, G., “Der Einfluss von Mg-Spuren auf die Widerstands-anderungen bei der Aushartung von Al-Zn-Mg Legierurtgen,” Acta Met. 12: 270, 1964.Google Scholar
19. Ohta, M. and Hashimoto, F., “Clustering in Al-Zn-Mg Alloys,” J. Phys. Soc. Japan 19: 1337, 1964.Google Scholar
20. Gould, R. W. and Gerold, V. K., “Adaptation of the Norelco High Angle Diffractometer for Small Angle Scattering Studies of Preprecipitation Phenomenon,” Noretco Reporter XII: 7, January-March, 1965.Google Scholar
21. Gerold, V. K., “The Zone Formation in Aluminum-Zinc Alloys,” Physica Status Solidi 1: 37, 1961.Google Scholar
22. Thomas, G. and Washburn, J., Electron Microscopy and Strength of Crystals, Intersciertce Publishers, New York, 1963.Google Scholar
23. Hardy, H. K., J. Inst. Metals 79: 321, 1951.Google Scholar
24. Gould, R. W. and Gerold, V. K., “The Influence of Mg Atoms on Diffusion Processes in Al-Zn Alloys,” Acta Met. 12: 954, 1964.Google Scholar
25. Bonfiglioli, A. F. and Guinier, A., “La Structure des Zones G.P. dans les Alliages Aluminum-Zinc au Premier Stade de leur Formation,” to appear in Acta Met. in 1966.Google Scholar
26. Perry, A. J., “Solute-Vacancy Interaction Energies and the Effect of 0.009 At.% Mg on the Ageing Kinetics of an Al-4.01 At.% Zn Alloy,” to appear in Acta Met. in 1966.Google Scholar
27. Perry, A. J., “The Effect of Solute-Solute Interaction on the Apparent Vacancy Formation Energy in Dilute Aluminum Alloys,” Acta Met. 14: 719, June 1966.Google Scholar