Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T19:05:10.780Z Has data issue: false hasContentIssue false

Grazing-incidence X-Ray Analysis of Surfaces and Thin Films

Published online by Cambridge University Press:  06 March 2019

T. C. Huang*
Affiliation:
IBM Research Division, Almaden Research Center 650 Harry Road, San Jose, CA 95120-6099
Get access

Abstract

Grazing-incidence X-ray analysis techniques which are commonly used for the nondestructive characterization of surfaces and thin films are reviewed. The X-ray reflectivity technicue is used to study surface uniformity and oxidation, layer thickness and density, interface roughness and diffusion, etc. The grazing-incidence in-plane diffraction technique is used to determine in-plane crystallography of epitaxial films. The grazing-incidence asymmetric-Bragg diffraction is used for surface phase identification and structural depth profiling determination of polycrystalline films. Typical examples to illustrate the types of information that can be obtained by the techniques are presented.

Type
III. Thin-Film and Surface Characterization by XRD
Copyright
Copyright © International Centre for Diffraction Data 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Feidenhans'l, R., Surface Sci. Rept. 10, 105 (1989).Google Scholar
2 Kiessig, H., Ann. Physik (Leipzig) 10, 769 (1931).Google Scholar
3 See, for example, papers in “Advances in Surface and Thin Film Diffraction,” MRS Symposium Proceedings, Volume 208, edited by T. C, Huang, P. J. Cohen, and D. J. Eaglesham, MRS, Pittsburgh, PA (1991); T. P. Russell, Mater. Sci. Repts. 5, 171 (1990), and references therein.Google Scholar
4 Parrish, W., Erickson, C., T. C. Huang, Hart, M., Giltes, B., and Toraya, H., MRS Symposium Proc. 208, 327(1991).Google Scholar
5 Huang, T.C. and Parrish, W., this volume.Google Scholar
6 Miller, D.C., private communication.Google Scholar
7 Hersmeier, B.D., C, R.F.. Farrow, Lee, C.H., Marinero, E.E., Lee, C.J., Marks, R.F., and Chien, C.J., J. Appl. Phys. 69, 5646 (1991).Google Scholar
8 Marra, W.C., Eisenberger, P., and Cho, A.Y., J. Appl. Phys. 50, 6927 (1979).Google Scholar
9 Segmiiller, A. Adv. X-Ray Anal 29, 353 (1986); Thin Solid Films 154, 33 (1987).Google Scholar
10 Segmiiller, A., Noyan, I.C., and Speriosu, V.S., Porg, Cryst. Growth and Characterization 18, 21 (1989).Google Scholar
11 Huang, T.C., Segmiiller, A., Lee, W., Lee, V., Bullock, D., and Karimi, R., Adv. X-Ray Anal. 32, 269 (1989).Google Scholar
12 Calculated from lattice constants: a = 3.8856 A, b = 11.6804 A, and c = 3.8IS5 A, PDF #38-1433, JCPDS-ICDD, Swarthmore, PA (1988).Google Scholar
13 Felder, R. and Berry, B.S., J. Appl. Cryst. 3, 372 (1970).Google Scholar
14 York, B. and Austin, A.B., Proc. APIE 690, 135 (1986).Google Scholar
15 Huang, T.C. and York, B., Appl Phys. Lett. 50, 139(1987).Google Scholar
16 Huang, T.C., Toney, M., Brennan, S., and Rek, Z., Thin Solid Films 154, 439 (1987).Google Scholar
17 Lim, G., Parrish, W., Ortiz, C., Belotto, M., and Hart, M., Mater, J.. Res. 2, 471 (1987).Google Scholar
18 Takayama, T. and Matsumoto, Y., Adv. X-Ray Anal. 33, 109 (1990).Google Scholar
19 Huang, T.C., Adv. X-Ray Anal. 33, 91 (1990).Google Scholar
20 Toney, M., ”. Huang, C., Brennan, S., and Rek, Z., J. Mat. Res. 3, 351 (1988).Google Scholar