Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T06:04:32.682Z Has data issue: false hasContentIssue false

Internal Stress in an Alumina/Silicon Carbide Whisker Composite

Published online by Cambridge University Press:  06 March 2019

M. Oden
Affiliation:
Engineering Materials Linköping University S-581 83 Linköping, Sweden
T. Ericsson
Affiliation:
Engineering Materials Linköping University S-581 83 Linköping, Sweden
J. B. Cohen
Affiliation:
Department of Materials Science and Engineering McCormick School of Engineering and Appiied Science Northwestern University Evanston IL, 60208-3100, USA
Get access

Abstract

The internal stress state in a Al2O3-SiC composite has been studied with X-ray diffraction and with calculations with a modified Eshelby model. The influence (on the internal stress state) of volume fraction, temperature, geometric shape, and the orientation of the silicon carbide particles are discussed. The stress tensors were measured in both the matrix and in the reinforcing phase, and the macro- and microstresses were separated for ail the components. Good agreement with the microstresses for the Eshelby model is found in all cases.

Results from X-ray diffraction experiments at low temperature (45-295 K) on the coefficient of thermal expansion are also presented.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Becher, P. F., Hsueh, C. H., Angelini, P., Tiegs, T. N., Toughening behavior on whiskerreinforced ceramic matrix composites, J. Am. Cer. Soc. 71:12:1050(1988).Google Scholar
2. Jenkins, M., Kobayashi, A., White, K., Bradt, R., Crack initiation in a SiC/Al203 matrix composite, J. Am. Cer. Soc. 70:6:393 (1987).Google Scholar
3. Drcder, K., Ciannakopuios, A. E., Zeng, K., Rowdiffe, D., Fracture toughness anisotropy of a hot pressed Al203/SiCw composite,. / Mat. Sci. Lett. 9:1085 (1990).Google Scholar
4. Hansson, T., Warren, R., Wasen, J., Fracture toughness anisotropy and toughening mechanisms of a hot-pressed alumina reinforced with silicon carbide whiskers, J. Am. Ceram. Soc. 76[4]:841 (1993).Google Scholar
5. Hansson, T., Warren, R., Wasen, J., Quantitative characterization of toughening mechanisms in alumina and alumina composites, submitted to J. of Hard Mails.Google Scholar
6. Taya, M., Hayasht, S., Kobayashi, A. S., Yoon, H. S., Toughening of a particuiate-reinforced ceramic-matrix composite by thermal residual stress, J. Am. Ceram. Soc. 73[5]:1382 (1990).Google Scholar
7. Cornwall, B., Krisric, W. D., Role of residual stress field interaction in strengthening of particuiate-reinforced composites, . /. Mat. Sci. 27:1217(1992).Google Scholar
8. Beyerly, D. S., Spearing, S. M., Zok, F. W., Evans, A. G., Damage and failure in unidirectional ceramic-matrix composites, J. Am. Ceram. Soc. 75:10:2719(1992).Google Scholar
9. Li, Z., Micromechanical stresses in monolithic ceramics and ceramic composite material, Ph. D. dissertation, University of Washington (1988).Google Scholar
10. Majumdar, S., Kupperman, D., Effects of temperature and volume fraction on average residual thermal strains in a SiC/Al203 composite, J. Am. Ceram. Soc. 72:2:312 (1989).Google Scholar
11. Oden, M., Persson, C., Ericsson, T., Measurement and calculation of the internal stresses in CMC and MMC, European Conference on Residua! Stresses, Frankfurt a. M., Germany, (Nov. 1992).Google Scholar
12. Goto, Y., Tsuge, A., Mechanical properties of unidirectionally oriented SiC-whiskerreinforced Si3N4 fabricated by extrusion and hot-pressing, J. Am. Ceram. Soc. 76:6:1420(1993).Google Scholar
13. Cohen, J. B., The measurements of stresses in composites, Powder Diff. 1:15 (1986).Google Scholar
14. Noyan, I. C., Equilibrium conditions for the average stresses measured by x-rays, Met. Tram. A 14:1907(1983).Google Scholar
15. Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. 241A. 376 (1957).Google Scholar
16. Eshelby, J. D., The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. 252A:561 (1959).Google Scholar
17. Eshelby, J. D., Elastic inclusions and inhomogenities, Prog. SolidMech, 2:89(1961).Google Scholar
18. Mura, T., “Micromechanics of Defects in Solids”, 2nd edition, Martinus NijhofF Publishers, Dordrecht (1987).Google Scholar
19. Withers, P. J., Stobbs, W. M., Pedersen, O. B., In application of the Eshelby method of internal stress determination to short fibre metal matrix composites, Acta Metal. 37:11:3061(1989).Google Scholar
20. Mori, T., Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, ActaMetal. 21:5:571 (1973).Google Scholar
21. Winholtz, R. A., Cohen, J. B., Separation of the macro- and micro-stresses in plastically deformed 1080 steel, Adv. X-ray Ana. 32:341 (1989).Google Scholar
22. Noyan, I. C., Cohen, J. B., “Residual Stress: Measurement by Diffraction and Interpretation”, Springer-Verlag, New York (1987).Google Scholar
23. Li, Z., Bradt, R. C., The single-crystai elastic constants of cubic (3C) SiC to 1000°C, J. MatSci. 22:2557(1986).Google Scholar
24. Li, Z., Bradt, R. C., Thermal expansion of the cubic (3C) polytype of SiC, J. Mat. Sci. 21:4366(1986).Google Scholar
25. Cobie, R. L., Kingeriy, W. D., Effect of porosity on physical properties of sintered alumina, J. Am. Cer. Soc. 39:11 :C2 (1983).Google Scholar
26. Abuhasan, A., Predecki, P., Residual stresses in Al2O3/SiC (whisker) composites containing interfacial carbon films, Adv. X-ray Anal. 32:471:23 (1989).Google Scholar
27. “MCIC Reports on Engineering Property Data on Selected Ceramics”, Vol. 2, Carbides; pp. 5. 2. 3-9 (Aug. 1979), and Vol. 3, Single oxides; pp. 5, 4. 1-23 (July 1981), Battelle Columbus Laboratories, Columbus, Ohio, USA.Google Scholar
28. Suzuki, H., Iseki, T., Ito, M., Annealing behavior of neutron-irradiated beta SiC, J. Nucl. Mater. 48:859(1973).Google Scholar
29. Taylor, T. A., Jones, R. M., “Silicon Carbide, a High Temperature Semiconductor”, Oxford (1960).Google Scholar
30. Smith, L. F., Krawitz, A. D., Clarke, P., Saimoto, S., Shi, N., Arsenault, R. J., Residual stresses in discontinuous metal matrix composites, Mat. Sci. Eng A159:L13 (1992).Google Scholar
31. Persson, C., Residual stresses and mechanical properties of metal matrix composites, Ph. D. dissertation no. 328, Linkoping University, Sweden (1993).Google Scholar
32. Hanabusa, T., Nishioka, K., Fujiwara, H., Criterion for the triaxial x-ray residual stress analysis, Z. Metallkd. 74:307 (1983).Google Scholar
33. Krawitz, A. D., The Use of X-Ray Stress Analysis for WC Base Cermets, 75:29 (1985).Google Scholar