Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T23:58:01.810Z Has data issue: false hasContentIssue false

Low Energy X-Ray and Electron Absorption Within Solids (100-1500 ev Region)

Published online by Cambridge University Press:  06 March 2019

Burton L. Henke
Affiliation:
University of Hawaii, Honolulu, Hawaii 96822
Eric S. Ebisu
Affiliation:
University of Hawaii, Honolulu, Hawaii 96822
Get access

Abstract

Quantitative analysis by x-ray fluorescence and photoelectron and Auger electron analysis can be effectively extended through a precise knowledge of the total aad subshell photoionization cross sections. Light element and intermediate element analysis, as based upon K and L series fluorescence respectively, involve x-ray interactions in the low energy region, Optimized analysis for essentially all the elements by x-ray induced photoelectron and Auger electron spectroscopy involves both x-ray and electron interactions in the low energy region. Unfortunately, theory and measurement for interaction cross sections in this 100-1500 eV region are difficult, particularly for the heavier elements. Nevertheless, recent advances in experimental and computerized-theoretical techniques for the determination of low energy interaction coefficients do permit establishing appreciatly more complete tabulations of cross sections than are currently available in this energy region.

In this paper, the types of interaction cross section data that are needed for quantitative x-ray and electron analysis are defined. Such data that are available from experiment and from theory are reviewed and compared. Some newer techniques for the measurement of cross sections are discussed. And finally, new “state of the art” tables are presented for the mass absorption coefficients of all of the elements and of some special laboratory materials. These are tabulated specifically for twenty-six of the most commonly applied characteristic wavelengths in the 8-110 A region and are based upon the best currently available theoretical and experimental data.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1. Henke, B. L., White, R., and Lundberg, B., J. Appl. Phys. 28, 98 (1957)Google Scholar
2. Henke, B. L., Norelco Reporter, Vol. XIV, No. 34 (1967)Google Scholar
3. Henke, B. L. and Elgin, R. L., in Henke, Newkirk and Mallett, Editors, Advances in X-Ray Analysis, Vol. 13, p. 639665 Plenum Press (1970)Google Scholar
4. Fano, U and Cooper, J. W., Rev. Mod. Phys. 40, 441 (1968)Google Scholar
5. Storm, E and Israel, H. I., Nucl. Data Tables 1, 565 (1970)Google Scholar
6. McGuire, E. J., Phys. Rev. 175, 20 (1968)Google Scholar
7. Kennedy, D. J. and Manson, S. T., Phys, Rev. A5 227 (1972)Google Scholar
8. Henry, E. M., Bates, C. L., and Veigele, W. J., Phys. Rev. A6, 2131 (1972)Google Scholar
9. Veigele, W. J., Atomic Data Tables 5, 51 (1973)Google Scholar
10. Hubbell, J. H., Atomic Data 3, 241(1971), also see Hatl. Bur. Std. Report Ho. NSRDS-NBS 29 (1969)Google Scholar
11. Henke, B. L., in Fink, R. W., et al, Editors, Inner Shell Ionization Phenomena and Future Applications, (Technical Information Division of the U. S. Atomic Energy Commission, Oak Ridge, Tennessee, 1973)Google Scholar
12. Wuilleumier, F., Phys. Rev. A6, 2067 (1972)Google Scholar
13. Krause, M. O., Phys. Rev. 177, 151 (1969)Google Scholar
14. Carlson, T. A., Moddeman, W. E., and Krause, M. O., Phys. Rev. Al, 1406 (1970)Google Scholar
15. Wuilleumier, F and Krause, M. O., in Shirley, D. A., Editor, Electron Spectroscopy, p. 259; American Elsevier Publishing Co., Inc. (1972)Google Scholar
16. Charles Fadley-Private Communication (submitted to Chemical Physics Letters)Google Scholar
17. Henke, B. L., Phys. Rev. A6, 94 (1972)Google Scholar
18. Brysk, H and Zerby, C. D., Phys. Rev. 171, 292 (1968)Google Scholar
19. Samson, J. A. R., Phil. Trans. Roy. Soc. Lond. A268, 141 (1970)Google Scholar
20. Henke, B. L., in Barrett, Newkirk and Mallett, Editors, Advances in X-Ray Analysis, Vol. 12, p. 480, Plenum Press (1969)Google Scholar
21. Helmer, J. C., Am. J. Phys. 34, 222 (1966)Google Scholar
22. Klasson, M., et al, Physica Scripta 5, 93 (1972)Google Scholar
23. Pines, D., Rev. Mod. Phys. 28, 184 (1956)Google Scholar
24. Perrell, R. A., Phys. Rev. 101, 554 (1956)Google Scholar
25. Quinn, J. J., Phys. Rev. 126, 1453 (1962)Google Scholar
26. Blackstock, A. W., Ritchie, R. H., and Birkhoff, R. D., Phys. Rev. 100, 1078 (1955)Google Scholar
27. van der Ziel, A., Phys. Rev, 92, 35 (1953)Google Scholar
28. Scofield, J. H., Technical Report No. 51326 (1973), University of California Radiation LaboratoryGoogle Scholar
29. Henke, B. L., in Mueller, W. M., Editor, Advances in X-Ray Analysis, Vol. 5, p. 285, Plenum Press (1962)Google Scholar
30. Henke, B. L., X-Ray Optics and X-Ray Microanalysis, p. 157 Academic Press, Inc. (1963)Google Scholar
31. Luhirskii, A. P., et al, Opt. and Spectrosc. 16, 168 (1964)Google Scholar
32. Jaegle, P., et al, Phys. Rev. 188, 30 (1969)Google Scholar
33. Ershov, O. A., Opt. and Spectrosc. 22, 252 (1967)Google Scholar
34. Lukirskii, A. P., Zimkina, T. M., and Gribovskii, S. A., Sov. Phys. Solid State 8, 1525 (1966)Google Scholar
A Allen, S. J. M., reported in Compton and Allison, X-Rays in Theory and Experiment, (Van Nostrand, 1935), p. 800.Google Scholar
An Andrews, C. L., Phys. Rev, 54, 994 (1938).Google Scholar
B Bearden, A. J., J. Appl. Phys. 37 (4), 1681 (1966).Google Scholar
Ba Bandopadhyaya, G. B. and Maitra, A. T., Proc. Roy. Soc. 21, 869 (1936).Google Scholar
Bi Biermann, H. H., Ann. Physik 26, 740 (1936).Google Scholar
BU Baurmann, V. E. and Ulmer, K., Z. Naturforsch. 12A, 670 (1957).Google Scholar
C Cooke, B. A. and Stewardson, E. A., Brit. J. Appl. Phys. 15, 1315 (1964).Google Scholar
CR Carter, R. W., et al., Health Physics 13, 593 (l967).Google Scholar
CW Cole, M. J., et al., Final Report, U. S. Dept. of Army Contraet DA-91-591-EUC-3094, October 1964.Google Scholar
D Dershem, E and Schein, M., Phys. Rev. 37, 1238 (1931).Google Scholar
De Denne, D. R., Brit. J. Appl. Phys. 3, 1392 (1970).Google Scholar
F Fomichev, V. A. and Lutirskii, A. P., Opt. and Spectrosc. 22, 432 (1967).Google Scholar
H Henke, B. L. et al., Technical Report, AFOSR 67-1254, June 1967; and Advances in X-Ray Analysis, Vol. 13 (Plenum Press, New York, 1970), p. 639 (with Elgin, R. L.).Google Scholar
Hi Hill, R. D., Proc. Roy. Soc. (London) A161, 284 (1937).Google Scholar
HW Hughes, G. D., et al., Brit. J. Appl. Phys. 1, 695 (1968).Google Scholar
J Jonsson, E., Dissertation, Uppsala (1928).Google Scholar
KS Kohlhaas, E and Scheiding, F., Proc. Vth. Int'l Congress on X-Ray Optics and Microanalysis, Tubingen, 1968 (Springer-Verlag, 1969), p. 193.Google Scholar
LC Lublin, P., et al., Advances in X-Ray Analysis, Vol. 13 (Plenum Press, New York, 1970), p. 632.Google Scholar
LG Lukirakii, A. P., et al., Opt. and Spectrosc. 20, 203 (1966).Google Scholar
LS Lukirskii, A. P., et al., Opt. and Spectrosc. 16, 168 (l946).Google Scholar
LZ Lukirskii, A. P., et al., Opt. and Spectrosc. 17, 234 (1964).Google Scholar
M Messner, R. H., Z. Physik 85, 727 (1933).Google Scholar
O Ogier, W. T., et al., Appl. Phys. Lett. 5, 146 (1964).Google Scholar
OE Ortner, B., et al., Mikrochim. Acta Suppl. 4, 270 (1970).Google Scholar
Se Senemaud, G., J. Phys. 30, 811 (1969).Google Scholar
W Woernle, B., Ann. Physik 5, 475 (1930).Google Scholar
We Weisweiler, W., Proc. Vth Int'l Congress on X-Ray Optics and Microanalysis, Tubingen, 1968 (Spriner-Verlag, 1969), p. 198.Google Scholar
Wi Wise, P. R., John Hopkins University Thesis NP-12661 (l96l).Google Scholar
H+ Henke, B. L. and Ebisu, E. S., this paper.Google Scholar
- Aboud, A. A., et al., J. Opt. Soc. Am. 45, 767 (1955). [122-860 A; 0]Google Scholar
- Cooke, B. A. and Stewardson, E. A., Erit. J. Appl. Phys. 15, 1315 (1964). [7-17 A; Be, Mg, Al, Cu, Ag]Google Scholar
- Dhez, Pierre, Thesis, University of Paris, Orsay, Series A, No. 747, (March 1971). [50-310 A; Bi]Google Scholar
- Ederer, D. L. and Toraboulian, D. H., Phys. Rev. 133, A1525 (1964). [80-600 A; Ne]Google Scholar
- Ershov, O. A. and Lukirskii, A. P., Sov. Phys. Solid State 8, 1699 (1967). [60-140 A; Si, SiO]Google Scholar
- Fomichev, V. A. and Zhukova, I. I., Opt. and Spectrosc. 24, 147 (1968). [17.6-250 A; C]Google Scholar
- Gahwiller, Christian and Brown, Frederick C., Phys. Rev. B 2, 1918 (1970). [60-175 A; Al, Si, SiO]Google Scholar
- Haensel, R., et al., Applied Optics 7, 301 (1968). [50-340 A; Cu, Ag, Sn, Au, Bi]Google Scholar
- Haensel, R.. et al., Solid State Comm. 7, 1495 (1969). [20-410 A; Ta, W, Re, Pt]Google Scholar
- Jaegle, P., et. al., Phys. Rev., 188, 30 (1969). [20-130 A; Ta, Pt, Au, Bi]Google Scholar
- Jaegle, P., et al., Physics Letters 26A, 364 (1968). [20-140 A; Ta, Pt]Google Scholar
- Jaegle, P and Missoni, G., C. R. Acad, . Se. Paris, Series B, 262, 71 (1966). [26-120 A; Au]Google Scholar
- Jaegle, P., et. al., Phys. Rev. Lett. 18, 887 (1967). [25-85 A; Bi, Pb]Google Scholar
- Kyser, D. F., in G. Shinoda et. al., Editors, Proceedings of the Sixth International Conference on X-Ray Optics and Microanalysis, University of Tokyo Press (1972). [12-28 A; Ti, V, Cr, Mn, Fe, Co, Mi, Cu, Zn]Google Scholar
- Lukirskii, A. P., et al., Sov. Phys. Solid State 8, 1525 (1966). [25-250 A; Te, Sn, Pb, PbTe, SnTe]Google Scholar
- Sonntag, B and Haensel, R., Solid State Com. 7, 597 (1969). [40-310 A; Ti, V, Cr, Mn, Fe, Co, Ni ]Google Scholar
- Tomboulian, D. H. and Bedo, D. E., Phys. Rev. 104, 590 (1956). [70-200 A; Si, Ge]Google Scholar
- Watson, W. S., J. Phys. B: Atom. Molec. Phys. 5, 2292 (1972). [58-200 A; He, Ne, Ar]Google Scholar
- Woodruff, R. W. and Givens, M. P., Phys. Rev. 97, 52 (1955). [100-400 A; Te]Google Scholar
- Wuilleumier, F., C. R. Paris Acad. Sc., 270B, 272 (1970). [8-15 A; Ne, Ar]Google Scholar
- Zimkina, T. M., et al., Sov. Phys. Solid State 9, 1128 (1967). [25-250 A; Sn, Te, Xe, La, Ce, Pr, M, Sm, Eu, Gd, Ho, Er, Tu, Ib, Lu]Google Scholar
- Zimkina, T. M. and Lukirskii, A. P., Sov. Phys. Solid State 7, 1170 (1965). [23.6-190.3 A; KC1, KI RbCl, RbBr, RbI, CsCl,CsBr, CsI]Google Scholar
A Allen, S. J. M., reported in Compton and Allison, X-Rays in Theory and Experiment, (Van Nostrand, 1935), p. 800.Google Scholar
An Andrews, C. L., Phys. Rev, 54, 994 (1938).Google Scholar
B Bearden, A. J., J. Appl. Phys. 37 (4), 1681 (1966).Google Scholar
Ba Bandopadhyaya, G. B. and Maitra, A. T., Proc. Roy. Soc. 21, 869 (1936).Google Scholar
Bi Biermann, H. H., Ann. Physik 26, 740 (1936).Google Scholar
BU Baurmann, V. E. and Ulmer, K., Z. Naturforsch. 12A, 670 (1957).Google Scholar
C Cooke, B. A. and Stewardson, E. A., Brit. J. Appl. Phys. 15, 1315 (1964).Google Scholar
CR Carter, R. W., et al., Health Physics 13, 593 (l967).Google Scholar
CW Cole, M. J., et al., Final Report, U. S. Dept. of Army Contraet DA-91-591-EUC-3094, October 1964.Google Scholar
D Dershem, E and Schein, M., Phys. Rev. 37, 1238 (1931).Google Scholar
De Denne, D. R., Brit. J. Appl. Phys. 3, 1392 (1970).Google Scholar
F Fomichev, V. A. and Lutirskii, A. P., Opt. and Spectrosc. 22, 432 (1967).Google Scholar
H Henke, B. L. et al., Technical Report, AFOSR 67-1254, June 1967; and Advances in X-Ray Analysis, Vol. 13 (Plenum Press, New York, 1970), p. 639 (with Elgin, R. L.).Google Scholar
Hi Hill, R. D., Proc. Roy. Soc. (London) A161, 284 (1937).Google Scholar
HW Hughes, G. D., et al., Brit. J. Appl. Phys. 1, 695 (1968).Google Scholar
J Jonsson, E., Dissertation, Uppsala (1928).Google Scholar
KS Kohlhaas, E and Scheiding, F., Proc. Vth. Int'l Congress on X-Ray Optics and Microanalysis, Tubingen, 1968 (Springer-Verlag, 1969), p. 193.Google Scholar
LC Lublin, P., et al., Advances in X-Ray Analysis, Vol. 13 (Plenum Press, New York, 1970), p. 632.Google Scholar
LG Lukirakii, A. P., et al., Opt. and Spectrosc. 20, 203 (1966).Google Scholar
LS Lukirskii, A. P., et al., Opt. and Spectrosc. 16, 168 (l946).Google Scholar
LZ Lukirskii, A. P., et al., Opt. and Spectrosc. 17, 234 (1964).Google Scholar
M Messner, R. H., Z. Physik 85, 727 (1933).Google Scholar
O Ogier, W. T., et al., Appl. Phys. Lett. 5, 146 (1964).Google Scholar
OE Ortner, B., et al., Mikrochim. Acta Suppl. 4, 270 (1970).Google Scholar
Se Senemaud, G., J. Phys. 30, 811 (1969).Google Scholar
W Woernle, B., Ann. Physik 5, 475 (1930).Google Scholar
We Weisweiler, W., Proc. Vth Int'l Congress on X-Ray Optics and Microanalysis, Tubingen, 1968 (Spriner-Verlag, 1969), p. 198.Google Scholar
Wi Wise, P. R., John Hopkins University Thesis NP-12661 (l96l).Google Scholar
H+ Henke, B. L. and Ebisu, E. S., this paper.Google Scholar
- Aboud, A. A., et al., J. Opt. Soc. Am. 45, 767 (1955). [122-860 A; 0]Google Scholar
- Cooke, B. A. and Stewardson, E. A., Erit. J. Appl. Phys. 15, 1315 (1964). [7-17 A; Be, Mg, Al, Cu, Ag]Google Scholar
- Dhez, Pierre, Thesis, University of Paris, Orsay, Series A, No. 747, (March 1971). [50-310 A; Bi]Google Scholar
- Ederer, D. L. and Toraboulian, D. H., Phys. Rev. 133, A1525 (1964). [80-600 A; Ne]Google Scholar
- Ershov, O. A. and Lukirskii, A. P., Sov. Phys. Solid State 8, 1699 (1967). [60-140 A; Si, SiO]Google Scholar
- Fomichev, V. A. and Zhukova, I. I., Opt. and Spectrosc. 24, 147 (1968). [17.6-250 A; C]Google Scholar
- Gahwiller, Christian and Brown, Frederick C., Phys. Rev. B 2, 1918 (1970). [60-175 A; Al, Si, SiO]Google Scholar
- Haensel, R., et al., Applied Optics 7, 301 (1968). [50-340 A; Cu, Ag, Sn, Au, Bi]Google Scholar
- Haensel, R.. et al., Solid State Comm. 7, 1495 (1969). [20-410 A; Ta, W, Re, Pt]Google Scholar
- Jaegle, P., et. al., Phys. Rev., 188, 30 (1969). [20-130 A; Ta, Pt, Au, Bi]Google Scholar
- Jaegle, P., et al., Physics Letters 26A, 364 (1968). [20-140 A; Ta, Pt]Google Scholar
- Jaegle, P and Missoni, G., C. R. Acad, . Se. Paris, Series B, 262, 71 (1966). [26-120 A; Au]Google Scholar
- Jaegle, P., et. al., Phys. Rev. Lett. 18, 887 (1967). [25-85 A; Bi, Pb]Google Scholar
- Kyser, D. F., in G. Shinoda et. al., Editors, Proceedings of the Sixth International Conference on X-Ray Optics and Microanalysis, University of Tokyo Press (1972). [12-28 A; Ti, V, Cr, Mn, Fe, Co, Mi, Cu, Zn]Google Scholar
- Lukirskii, A. P., et al., Sov. Phys. Solid State 8, 1525 (1966). [25-250 A; Te, Sn, Pb, PbTe, SnTe]Google Scholar
- Sonntag, B and Haensel, R., Solid State Com. 7, 597 (1969). [40-310 A; Ti, V, Cr, Mn, Fe, Co, Ni ]Google Scholar
- Tomboulian, D. H. and Bedo, D. E., Phys. Rev. 104, 590 (1956). [70-200 A; Si, Ge]Google Scholar
- Watson, W. S., J. Phys. B: Atom. Molec. Phys. 5, 2292 (1972). [58-200 A; He, Ne, Ar]Google Scholar
- Woodruff, R. W. and Givens, M. P., Phys. Rev. 97, 52 (1955). [100-400 A; Te]Google Scholar
- Wuilleumier, F., C. R. Paris Acad. Sc., 270B, 272 (1970). [8-15 A; Ne, Ar]Google Scholar
- Zimkina, T. M., et al., Sov. Phys. Solid State 9, 1128 (1967). [25-250 A; Sn, Te, Xe, La, Ce, Pr, M, Sm, Eu, Gd, Ho, Er, Tu, Ib, Lu]Google Scholar
- Zimkina, T. M. and Lukirskii, A. P., Sov. Phys. Solid State 7, 1170 (1965). [23.6-190.3 A; KC1, KI RbCl, RbBr, RbI, CsCl,CsBr, CsI]Google Scholar
- Aboud, A. A., et al., J. Opt. Soc. Am. 45, 767 (1955). [122-860 A; 0]Google Scholar
- Cooke, B. A. and Stewardson, E. A., Erit. J. Appl. Phys. 15, 1315 (1964). [7-17 A; Be, Mg, Al, Cu, Ag]Google Scholar
- Dhez, Pierre, Thesis, University of Paris, Orsay, Series A, No. 747, (March 1971). [50-310 A; Bi]Google Scholar
- Ederer, D. L. and Toraboulian, D. H., Phys. Rev. 133, A1525 (1964). [80-600 A; Ne]Google Scholar
- Ershov, O. A. and Lukirskii, A. P., Sov. Phys. Solid State 8, 1699 (1967). [60-140 A; Si, SiO]Google Scholar
- Fomichev, V. A. and Zhukova, I. I., Opt. and Spectrosc. 24, 147 (1968). [17.6-250 A; C]Google Scholar
- Gahwiller, Christian and Brown, Frederick C., Phys. Rev. B 2, 1918 (1970). [60-175 A; Al, Si, SiO]Google Scholar
- Haensel, R., et al., Applied Optics 7, 301 (1968). [50-340 A; Cu, Ag, Sn, Au, Bi]Google Scholar
- Haensel, R.. et al., Solid State Comm. 7, 1495 (1969). [20-410 A; Ta, W, Re, Pt]Google Scholar
- Jaegle, P., et. al., Phys. Rev., 188, 30 (1969). [20-130 A; Ta, Pt, Au, Bi]Google Scholar
- Jaegle, P., et al., Physics Letters 26A, 364 (1968). [20-140 A; Ta, Pt]Google Scholar
- Jaegle, P and Missoni, G., C. R. Acad, . Se. Paris, Series B, 262, 71 (1966). [26-120 A; Au]Google Scholar
- Jaegle, P., et. al., Phys. Rev. Lett. 18, 887 (1967). [25-85 A; Bi, Pb]Google Scholar
- Kyser, D. F., in G. Shinoda et. al., Editors, Proceedings of the Sixth International Conference on X-Ray Optics and Microanalysis, University of Tokyo Press (1972). [12-28 A; Ti, V, Cr, Mn, Fe, Co, Mi, Cu, Zn]Google Scholar
- Lukirskii, A. P., et al., Sov. Phys. Solid State 8, 1525 (1966). [25-250 A; Te, Sn, Pb, PbTe, SnTe]Google Scholar
- Sonntag, B and Haensel, R., Solid State Com. 7, 597 (1969). [40-310 A; Ti, V, Cr, Mn, Fe, Co, Ni ]Google Scholar
- Tomboulian, D. H. and Bedo, D. E., Phys. Rev. 104, 590 (1956). [70-200 A; Si, Ge]Google Scholar
- Watson, W. S., J. Phys. B: Atom. Molec. Phys. 5, 2292 (1972). [58-200 A; He, Ne, Ar]Google Scholar
- Woodruff, R. W. and Givens, M. P., Phys. Rev. 97, 52 (1955). [100-400 A; Te]Google Scholar
- Wuilleumier, F., C. R. Paris Acad. Sc., 270B, 272 (1970). [8-15 A; Ne, Ar]Google Scholar
- Zimkina, T. M., et al., Sov. Phys. Solid State 9, 1128 (1967). [25-250 A; Sn, Te, Xe, La, Ce, Pr, M, Sm, Eu, Gd, Ho, Er, Tu, Ib, Lu]Google Scholar
- Zimkina, T. M. and Lukirskii, A. P., Sov. Phys. Solid State 7, 1170 (1965). [23.6-190.3 A; KC1, KI RbCl, RbBr, RbI, CsCl,CsBr, CsI]Google Scholar