Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T13:28:03.513Z Has data issue: false hasContentIssue false

A Review of X-Ray Diffraction Methods for Diffusion Studies

Published online by Cambridge University Press:  06 March 2019

J. A. Carpenter Jr.
Affiliation:
Physics Research, Chrysler Corporation, P.O. Box 1118 (CIMS 418-38-04), Detroit, Michigan 48231
D. R. Tenney
Affiliation:
Metallurgical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Get access

Abstract

X-ray diffraction methods for studying solid-state diffusion are reviewed. Because of the lack of penetration, such methods are suited for diffusion zones spanning only a few microns. Most involve analyses of one, or more, (hkl) “band” of intensities spread in 2θ as a result of the corresponding lattice parameter spread associated with compositional inhomogeneities. Further, many are non-destructive, making it possible to follow the progression of diffusion with time in the same specimen.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Elam, C. F., “The Diffusion of Zinc in Copper Crystals,J. Inst. Met. 43, 217235 (1930).Google Scholar
2. Jost, W., “Die Diffusionsgeschwindigkeit von Kupfer in Gold,” Zeit. Phys. Chem. 16B, 123128 (1932).Google Scholar
3. Jost, W., “Die Diffusionsgeschwindigkeit einiger Metalle in Gold und Silher,” Zeit. Phys. Chem. 21B, 158160 (1933).Google Scholar
4. Matano, C., “X-ray Studies on the Diffusion of Copper into Nickel,Memoirs of the College of Science of the Kyoto Imperial University 15, 351353 (1932).Google Scholar
5. Matano, C., “Further X-ray Studies in the Diffusion of the Nickel-Copper System,Memoirs of the College of Science of Kyoto Imperial University 16, 249259 (1933).Google Scholar
6. Matano, C., “X-ray Studies on the Diffusion of Metals in Copper,Japan J. of Phys. 9, 4147 (1934).Google Scholar
7. Hicks, L. C., “An X-ray Study of the Diffusion of Chromium into Iron,Trans. AIME 113, 163178 (1934).Google Scholar
8. Kirkendall, E., Thomassen, L and Upthegrove, C., “Rates of Diffusion of Copper and ZInc in Alpha Brass,Trans. AIME 133, 186203 (1939).Google Scholar
9. Mooradian, V. G. and Norton, J. T., “Influence of Lattice Distortion on Diffusion in Metals,Trans. AIME 117. 8997 (1935).Google Scholar
10. Sully, A. H., “A Simple Method for the Study of Metallic Diffusion in Certain Binary Alloy Systems,J. Sci. Instr. 22, 244245 (1945).Google Scholar
11. DuMond, J and Youtz, J. P., “An X-ray Method of Determining Rates of Diffusion in the Solid State,J. Appl. Phys. 11. 357365 (1940).Google Scholar
12. Duwez, P and Jordan, C. B., “Application of the Theory of Diffusion to the Formation of Alloys in Powder Metallurgy,Trans. ASM 41, 194212 (1949).Google Scholar
13. Seith, W and Heumann, T., Diffusion of Metals: Exchange Reactions, AEC-tr-4506, USAEC translation of: Diffusion in Metallen: Platawechselreaktion, Springer-Verlag (1955).Google Scholar
14. Gertsriken, S. D. and Dekhtyar, I. Ya., Solid State Diffusion in Metals, AEC-tr-6313, USAEC translation of publication under same name by State Publishing House for Physical-Mathematical Literature (1962).Google Scholar
15. Rudman, P. S., “An X-ray Diffraction Method for the Determination of Composition Distribution in Inhomogeneous Binary Solid Solutions,Acta Cryst. 13, 905909 (1960).Google Scholar
16. Fisher, B and Rudman, P. S., “X-ray Diffraction Study of Interdiffusion in Cu-Ni Powder Cotnpacts,” J. Appl. Phys. 32., 16041611 (1961).Google Scholar
17. Heckel, R. W., “An Analysis of Homogenization in Powder Compacts Using the Concentric-Sphere Diffusion Model,Trans. ASM 57, 443463 (1964).Google Scholar
18. Tronsdal, G. O. and Sorum, H., “An X-ray Diffraction Method for the Study of Interdiffusion in Metals,Physica Norvegica 1, 141144 (1962).Google Scholar
19. Tronsdal, G. O. and Sorum, H., “Interdiffusion in Cu-Ni, Co-Ni and Co-Cu,Phys. Stat. Solidi 4, 493498 (1964).Google Scholar
20. Pines, B. Ya. and Chaikovskii, E. F., “X-ray Diffraction Determination of the Heterodiffusion Coefficients in Alloys Forming Solid Substitution Solutions,” Translation from Russian by Morris D. Friedman, Inc., New York, 7 pages Original Russian source: Dokl Akad. Nauk SSSR 111 12341237 (1956).Google Scholar
21. Chaikovskii, E. F., “Certain Data on the Coefficients of Heterodiffusion in Cu-Ni, Fe-Wi and Fe-Cr Alloys with Deformed and Undeformed Crystal Lattices,Proc. Acad. Sci. USSR-Phys. Chem. Section 112, 123127 (1957).Google Scholar
22. Pines, B. Ya. and Smushkov, I. V., “X-ray Determination of the Coefficients of Heterodiffusion in Alloys Whose Components Differ Considerably in X-ray Absorption,J. Tech. Phys. (USSR) 28, 619625 (1958).Google Scholar
23. Pinss, B. Ya. and Smushkov, I. V., “X-ray Determination of the Coefficients of Heterodiffusion in Cr-Mo and Ni-W Systems,J. Tech. Phys. (USSR) 28, 626631 (1958).Google Scholar
24. Pines, B. Ya. and Smushkov, I. V., “X-ray Investigation of Heterodiffusion in Cu-Ni Alloys,Sov. Phys.-Sol. State 1, 858863 (1959).Google Scholar
25. Pines, B. Ya. and Chaikovskii, E. F., “An X-ray Investigation of the Kinetics of Reactive Diffusion in the Al-Sb System,Sov. Phys.-Sol. State 1, 864869 (1959).Google Scholar
26. Pines, B. Ya., Ivanov, I. G. and Smushkov, I. V., “Partial Diffusion Coefficients and Seif-Diffusion Coefficients in Copper-Nickel Alloys,Sov. Phys.-Sol. State 4, 18821890 (1962).Google Scholar
27. Levitskaya, M. A. and Vodap'yanova, N. A., “X-ray Determination of the Diffusion Coefficients by the Method of Double Thin Metallic Layers,Sov.. Phys.-Sol. State 4, 458460 (1962).Google Scholar
28. Fogel'son, R. L., “Method of Determining the Coefficient of Diffusion by X-ray Studies,Fiz. Metal. e Metallog. 25, 492496 (1968).Google Scholar
29. Houska, C. R., “X-ray Diffraction from a Binary Diffusion Zone,J. Appl. Phys. 41, 6975 (1970).Google Scholar
30. Bales, T. T., “An X-ray Diffraction Technique for Determining the Concentration Gradient Existing Beneath Thin Films,” M.Sc. thesis Virginia Polytechnic Institute, May, 1965, 50 pages.Google Scholar
31. Braski, D. N., “An X-ray Diffraction Method for Studying Small Diffusion Zones,” M.Sc. thesis Virginia Polytechnic Institute, May, 1965, 54 pages.Google Scholar
32. Tenney, D. R., Carpenter, J. A. and Houska, C. R., “X-ray Diffraction Technique for the Investigation of Small Diffusion Zones,J. Appl. Phys. 41, 44854492 (1970).Google Scholar
33. Carpenter, J. A., Tenney, D. R. and Houska, C. R., “Method for Determining Composition Profiles and Diffusion-Generated Substructure in Small Diffusion Zones,J. Appl. Phys. 42, 43054312 (1971).Google Scholar
34. Talty, P. K. and Tenney, D. R., “X-ray Diffraction Investigation of Bi-metallic Diffusion Zones in the Cu-Pd System,” to be published in Met. Trans.Google Scholar
35. Unnam, J., Carpenter, J. A. and Houska, C. R., “X-ray Diffraction Approach to Grain Boundary and Volume Diffusion,J. Appl. Phys. 44, 19561967 (1973).Google Scholar