Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T12:14:48.617Z Has data issue: false hasContentIssue false

A Strategy for Rapid and Accurate (p.p.m.) Measurement of Lattice Parameters of Single Crystals by Bond's Method

Published online by Cambridge University Press:  06 March 2019

R. L. Barns*
Affiliation:
Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey 07974
Get access

Abstract

All published accounts of the use of Bond's method for lattice parameter measurements have used step-scanning (at equal angle increments) of the diffraction peaks, followed by graphical or computer analysis of the data to locate the peak positions. It has been found that the peaks angles can be determined with little loss in accuracy or precision by manually setting the crystal angle to give a counting rate (observed on a rate-meter) equal to l/2 the peak rate and defining- the peak angle as the average of the angles on the two sides of the peak. Because of the asymmetry of the spectral line, defining the peak in this manner results in a shift of the peak angle from that determined by the mid-chord peak method. This shift can be compensated by determining an effective value of the wavelength based on a silicon standard. Using the method described, a lattice parameter measurement, including mounting and orienting the sample, taking the data and computing the result using a time-sharing computer terminal, can be made in less than 20 mins.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Parrish, W., “Results of the I.U.Cr. Precision Lattice Parameter Project”, ActaCryst. 13, 838850 (1960).Google Scholar
2. Vassamillet, L. F. and King, H. W., “Precision X-Ray Diffractometry Using Powder Specimens”, in Mueller, W. M. and M. Fay (Eds.) Advances in X-Ray Analysis, Vol. 6 p. 142157, Plenum Press (1963).Google Scholar
3. Boom, G., “Accurate Lattice Parameters and the LPC Method”, Thesis, University of Groningen (1966).Google Scholar
4. Bond, W. L., “Precision Lattice Constant Determination”, Acta Cryst. 13, p. 814818 (1960).Google Scholar
5. Beu, K. E., Musil, F. J. and Whitney, D. E., “Precise and Accurate Lattice parameters by Film Powder Methods. I. The Likelihood Ratio Method”, ActaCryst. 15, p. 12921301 (1962).Google Scholar
6. Beu, K. E., “Further Developments in a Likelihood Ratio Method for the Precise and Accurate Determination of Lattice Parameters”, ActaCryst. 22, p. 932933 (1967).Google Scholar
7. Barns, R. L., “A Survey of Precision Lattice Parameter Measurements as a Tool for the Characterization of Single-Crystal Materials”, Mat. Res. Bull. 2, p. 273282 (1967).Google Scholar
8. Bearden, J. A., “X-Ray Wavelengths”, p. 10, U.S. Atomic Energy Comm. (1964).Google Scholar
9. Deslattes, R. D., “Optical and X-Ray Interferometry of a Silicon Lattice Spacing”, App. Phys. Lett. 15, p. 386388 (1969).Google Scholar
10. Baker, T. W., George, J. D., Bellamy, B. A. and Causer, R., “Fully Automated High Precision X-Ray Diffraction”,, in Newkirk, J. B., Mallett, G. R. and Pfeiffer, H. G. (Eds.), Advances in X-Ray Analysis, Vol. 11, p. 359375 (1968).Google Scholar
11. Lisiovan, V. I. and Dikovskaya, R. R., “Local Precision Determination of Lattice Constants of a Single Crystal”, Instruments and Exper. Tech. (Eng. transl.), 4, p. 992994 (1969).Google Scholar
12. Henins, I. and Bearden, J. A., “Silicon-Crystal Determination of the Absolute Scale of X-Ray Wavelengths”, Phys. Rev, 135, p. A890A898 (1964).Google Scholar
13. Deslattes, R. D., Peiser, H. S., Bearden, J. A. and Thomsen, J. S., “Potential Appl. of the X-Ray/Density Method for Comparison of Atomic-Weight Values”, Metrologia, 2, p. 104111 (1966).Google Scholar
14. Segmuller, A., “Automated Lattice Parameter Determination on Single Crystals”, in Henke, B. L., Newkirk, J. B. and Mallett, G. R. (Eds.), Advances in X-Ray Analysis, Vol. 13, p. 455467 (1970).Google Scholar
15. Thomsen, J. S. and Yap, F. Y., “Effect of Statistical Counting Errors on Wavelength Criteria for X-Kay Spectra”, J. of Research, NBS-A. 72A, p. 187205 (1968).Google Scholar
16. Backovsky, J., “On the Most Accurate Measurements of the Wavelengths of X-Ray Spectral Lines”, Czech. J. Phys. 15, p. 752759 (1965).Google Scholar
17. Donnay, G. and Donnay, J. D. H., “The Symmetry Change in the High-Temperature Alkali Feldspar Series”, Am. J. Science, Bowen Vol. (Pt. 1), p. 115132 (1952).Google Scholar
18. Burke, J. and Tomkeieff, M. V., “Specimen and Beam Tilt Errors in Bond's Method of Lattice Parameter Determination”, Acta Cryst. A24, p. 683685 (1968).Google Scholar
19. Burke, J. and Tomkeieff, M. V., “Errors in the Bond Method of Lattice Parameter Determinations - Further Considerations”, J. Appl.Cryst. 2, p. 247248 (1969).Google Scholar
20. Gruber, S. E. and Black, E. E., “Analysis of the Axial Misalignment Error in Precision Lattice Parameter Measurement by the Bond Technique”, J. Appl, Cryst. 3, p. 354357 (1970).Google Scholar
21. G, M. A..Halliwell, “Measurement of Specimen Tilt and Beam Tilt in the Bond Method”, J. Appl. Cryst. 3, p. 418419 (1970).Google Scholar
22. Mandel, J., “The Statistical Analysis of Experimental Data”, p. 1ll, Interseience Publ., John Wiley and Sons, New York, 1964.Google Scholar