Published online by Cambridge University Press: 06 March 2019
The reduction of the background in x-ray fluorescent spectra is achieved by total reflection of the primary x-rays at a plane, smooth surface of a suitable reflector material. This effect essentially reduces the background caused by scattering of the primary photons from the substrate, thus improving the lower limits of detection in x-ray fluorescence analysis (XRF). Introducing additional to the reflector-substrate another reflector in the primary beam, this affects the spectral distribution of the exciting radiation (“high energy cutoff”). The result is an improved background, where detection limits of picogram amounts or concentrations in the ppb range are attainable for medium Z elements with energy dispersive detectors.