Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T00:29:29.831Z Has data issue: false hasContentIssue false

Total Reflectance X-Ray Spectrometry

Published online by Cambridge University Press:  06 March 2019

Hannes Aiginger
Affiliation:
Atominstitut der Österreichischen Universitäten Schüttelstraβe 115, A-1020 Wien, Austria
Peter Wobrauschek
Affiliation:
Atominstitut der Österreichischen Universitäten Schüttelstraβe 115, A-1020 Wien, Austria
Get access

Abstract

The reduction of the background in x-ray fluorescent spectra is achieved by total reflection of the primary x-rays at a plane, smooth surface of a suitable reflector material. This effect essentially reduces the background caused by scattering of the primary photons from the substrate, thus improving the lower limits of detection in x-ray fluorescence analysis (XRF). Introducing additional to the reflector-substrate another reflector in the primary beam, this affects the spectral distribution of the exciting radiation (“high energy cutoff”). The result is an improved background, where detection limits of picogram amounts or concentrations in the ppb range are attainable for medium Z elements with energy dispersive detectors.

Type
I. The Role of X-Ray Fluorescence in a Modern Analytical Laboratory (Plenary Session Papers)
Copyright
Copyright © International Centre for Diffraction Data 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yoneda, Y. and Horiuchi, T., Optical Flats for Use in X-Ray Spectro-chemical Microanalysis, Rev.Sci.Instr. 42, 10691070 (1971)Google Scholar
2. Aiginger, H. and Wobrauschek, P., A Method for Quantitative X-Ray Fluorescence Analysis in the Nanogram Region, Nucl.Instr. Meth. 114 157158 (1974)Google Scholar
3. Wobrauschek, P. and Aiginger, H., Total Reflection X-Ray Fluorescence Spectrometric Determination of Elements in Nanogram Amounts Anal .Chem. 47, 852855 (1975)Google Scholar
4. Knoth, J. and Schwenke, H., An X-Ray Fluorescence Spectrometer with Totally Reflecting Sample Support for Trace Analysis at the ppb Level, Fresenius Z.Anal,Chem. 291, 200204 (1978)Google Scholar
5. Knoth, J. and Schwenke, H., Fresenius Z.Anal.Chem. 301, 7 (1980)Google Scholar
6. Schwenke, H. and Knoth, J., A Highly Sensitive Energy-Dispersive- X-Ray Spectrometer with Multiple Total Reflection of the Exciting Beam, Nucl.Instr. Meth. 193, 239243 (1982)Google Scholar
7. Freitag, K., Energy Dispersive X-Ray Fluorescence Analysis with Multiple Total Reflection-An Improvement of Detection Limits, Report Richard Seifert & Co, Bogenstrasse 41, D 2070 AhrensburgGoogle Scholar
8. Ketelsen, P. und Knöchel, A., Multielement Analysis of Aerosol Samples by X-Ray Fluorescence Analysis with Totally Reflecting Sample Holders (in German), Fresenius Z.Anal.Chem. 317, 333342 (1984)Google Scholar
9. Lurf, G., Energiedispersive Total reflexions-Röntgenfluoreszenzanalyse für Elemente niedriger Ordnungszabl, Dissertation TU Wien (1984)Google Scholar
10. Prange, A., Development of a Trace Analytical Procedure for the Determination of Dissolved Heavy Metals in Sea Water Using Total Reflection X-Ray Fluorescence Analysis (in German), Thesis University of Hamburg (1983)Google Scholar