Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T22:33:22.827Z Has data issue: false hasContentIssue false

Total-Reflection X-ray Fluorescence of Thin Layers on and in Solids

Published online by Cambridge University Press:  06 March 2019

D. K. G. De Boer
Affiliation:
Philips Research Laboratories P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
W. W. van den Hoogenhof
Affiliation:
Philips Analytical Lelyweg 1, 7602 EA Almelo, The Netherlands
Get access

Abstract

The angular dependence of Total-reflection X-Ray Fluorescence intensities can behave in various ways. The variety is discussed by examining the x-ray intensity distribution in the material under investigation. It is shown that for thin layers on solids, interference fringes are present due to x-ray standing waves. This phenomenon is exploited to determine the depth distribution of elements in layered specimens.

Type
I. Surface and Near-Surface X-Ray Spectroscopy
Copyright
Copyright © International Centre for Diffraction Data 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Parratt, L. G., Phys. Rev. 95 (1954) 359.10.1103/PhysRev.95.359Google Scholar
2. Prange, A., Spectrochim. Acta 44B (1989) 437; P. Wobrausehek, paper presented at this conference.10.1016/0584-8547(89)80049-7Google Scholar
3. Brunel, M., Acta Cryst. A42 (1986) 304; M. Brunei and B. Gilles, Coll. Phys. C7 (1989) 85.Google Scholar
4. de Boer, D. K. G. and van den Hoogenhof, W. W., Spectrochim, Acta B, submitted; D. K.G. de Boer, to be published.Google Scholar
5. Bernike, W., paper presented at 3d TXRF Workshop, Vienna 1990; H. Schwenke, paper presented at European EDXRF Workshop, Antwerp 1990.Google Scholar
6. Król, A., Sher, C. J. and Kao, Y. H., Phys. Rev. B 38 (1988) 8579.10.1103/PhysRevB.38.8579Google Scholar
7. Barbee, T. W. Jr. and Waxburton, W. K., Mater. Lett. 3 (1984) 17.Google Scholar
8. Bartels, W. J., J. Vac. Sci. Technol. 81 (1983) 338.10.1116/1.582553Google Scholar
9. Batterman, B. W. and Cole, H., Rev. Mod. Phys. 36 (1964) 681.Google Scholar
10. Patel, J. R., Zegenhagen, J., Freeland, P. E., Hybertsen, M. S., Golovchenko, J. A. and Chen, D. M., J.Vac. Sci. Technol. B7 (1989) 894 and refs, herein.Google Scholar
11. Bedzyk, M. J., Bilderback, D. H., Bommarito, G. M., Caffrey, M. and Schildkraul, J. S., Science 241 (1988) 1788.10.1126/science.3175619Google Scholar
12. Bedzvk, M. J., Bommarito, G. M. and Schildkraut, J. S., Phys. Rev. Lett. 62 (1989) 1376.10.1103/PhysRevLett.62.1376Google Scholar
13. Becker, R. S., Golovchenko, J. A. and Patel, J. R., Phys. Rev. Lett. 50 (1983) 153.Google Scholar