No CrossRef data available.
Published online by Cambridge University Press: 22 October 2021
To reduce fan noise and weight, according to the structural characteristics of a turbofan engine, a fan rotor with an ultra-low rotating speed is designed in this study by using a new concept of diffusion blade profiles in which the rotating speed of an ultra-highly loaded rotor is only 0.58 times that of a normally loaded rotor. To further examine the applicability of this rotor, its matching stator is also designed. The flow fields in the ultra-highly and normally loaded fan stages are simulated using the same numerical method to conduct an aerodynamic characteristic comparison. Compared with the normally loaded rotor, the sizes of the boundary layers on the blade surfaces, the wakes behind the blades and the flow losses of the ultra-highly loaded rotor are smaller. At the design point, the efficiency of the ultra-highly loaded fan stages is higher than that of the normally loaded stage; moreover, the surge margin of the former is evidently larger than that of the latter. The ultra-highly loaded fan could be a good candidate for use in Ultra-High Bypass Ratio Geared Turbofan (UHBRGT) technology.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.