Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T09:48:28.406Z Has data issue: false hasContentIssue false

Analytical method for computing assembly errors in modular antenna during on-orbit assembly

Published online by Cambridge University Press:  06 February 2023

H.J. Dong
Affiliation:
School of Mechano-Electronic Engineering, Xidian University, 710071 Xi’an, People’s Republic of China
T.J. Li*
Affiliation:
School of Mechano-Electronic Engineering, Xidian University, 710071 Xi’an, People’s Republic of China
S.K. Zheng
Affiliation:
China Academy of Space Technology (Xi’an), 710000 Xi’an, People’s Republic of China
Z.W. Wang
Affiliation:
School of Mechano-Electronic Engineering, Xidian University, 710071 Xi’an, People’s Republic of China
Y.Q. Tang
Affiliation:
School of Mechano-Electronic Engineering, Xidian University, 710071 Xi’an, People’s Republic of China
X.F. Ma
Affiliation:
China Academy of Space Technology (Xi’an), 710000 Xi’an, People’s Republic of China
Y. Li
Affiliation:
China Academy of Space Technology (Xi’an), 710000 Xi’an, People’s Republic of China
*
*Corresponding author. Email: tjli@mail.xidian.edu.cn

Abstract

To meet the increasing communication demands, the satellites need to be equipped with the high-accuracy and large-aperture antennas. One of the effective methods to construct the modular antennas with ultra-high accuracy and ultra-large aperture is on-orbit assembly technology. During the on-orbit assembly missions, the assembly error is a key factor to affect the surface accuracy of the modular antennas. This paper studies the node design of each module and the assembly error analysis of the modular antennas. A design method of the module nodes is presented with consideration of the assembly gap between two modules. Meanwhile, a soft connection mechanism is designed to ensure the mobility among the assembly modules. To investigate the transmission law of the assembly errors, an analytical model of assembly error is derived based on the exponential product method. In order to establish the deformation surface with rotation and displacement assembly errors, an error ball concept is proposed by the analytical model. To decrease the assembly errors, the actuators are installed among some modules. Moreover, an adjustment method is proposed to obtain the adjustment amounts of actuators. Finally, the correctness of analytical model and the effectiveness of the adjustment method are demonstrated by the numerical simulations.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Puig, L., Barton, A. and Rando, N. A review on large deployable structures for astrophysics missions, Acta Astronaut, 2010, 67, (1), pp 1226. doi: 10.1016/j.actaastro.2010.02.021 CrossRefGoogle Scholar
Tang, Y.Q., Li, T.J. and Ma, X.F. Pillow distortion analysis for a space mesh reflector antenna, AIAA J, 2017, 55, (9), pp 18. doi: 10.2514/1.J055913 CrossRefGoogle Scholar
Chen, C.C., Li, T.J. and Tang, Y.Q., Mesh generation of elliptical aperture reflectors, J Aerosp Eng, 2019, 32, (4), pp 112. doi: 10.1 061/(ASCE)A S.1943-5525.0001014 CrossRefGoogle Scholar
Meshkovsky, V.Y., Sdobnikov, A.N. and Kisanov, Y.A. An approach to design of large-sized deployable hoop space antenna reflector, J Phys Conf Ser, 2021, 1902, (1), p 012125. doi: 10.1088/1742-6596/1902/1/012125 CrossRefGoogle Scholar
Wu, Z.M., Li, H. and Li, Q. Novel thermally stable segmented solid paraboloid antenna for high surface accuracy, AIAA J, 2021, 59, (11), pp 46694685. doi: 10.2514/I.J060169 CrossRefGoogle Scholar
Huang, H., Guan, F.L., Pan, L.L., Xu, Y. Design and deploying study of a new petal-type deployable solid surface antenna, Acta Astronaut, 2018, 148, pp 99110. doi: 10.1016/j.acta astro.2018.04.042 CrossRefGoogle Scholar
Shinde, S.D. and Upadhyay, S.H. The novel design concept for the tensioning system of an inflatable planar membrane reflector, Arch Appl Mech, 2021, 91, (4), pp 12331246. doi: 10.1007/s00419-020-01841-w CrossRefGoogle Scholar
Li, T.J., Tang, Y.Q. and Zhang, T. Surface adjustment method for cable net structures considering measurement uncertainties, Aerosp Sci Technol, 2016, 59, pp 5256. doi: 10.1016/j.ast.2016.10.012 CrossRefGoogle Scholar
Wu, Z. and Li, H. Novel One-layer-cable-net antenna with high surface accuracy, J Spacecraft Rockets, 2022, pp 114. doi: 10.2514/1.A35225 CrossRefGoogle Scholar
Tang, Y.Q., Li, T.J., Liu, Y. and Wang, Z.W. Minimization of cable-net reflector shape error by machine learning, J Spacecraft Rockets, 2019, 56, (11), pp 18. doi: 10.2514/1.A34464 CrossRefGoogle Scholar
Liu, Z.Q., Qiu, H., Li, X. and Yang, S.L. Review of large spacecraft deployable membrane antenna structures, Chin J Mech Eng-En, 2017, 30, (6), pp 14471459. doi: 10.1007/s10033-017-0198-x CrossRefGoogle Scholar
Liu, R.W., Guo, H.W., Liu, R.Q, et al. Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables, Acta Astronaut, 2017, 140, pp 6677. doi: 10.1016/j.actaastro.2017.07.047 CrossRefGoogle Scholar
Han, B., Xu, Y.D., Yao, J.T. and Dong, Z. Type synthesis of the deployable mechanisms for ring truss antenna based on constraint-synthesis method, Chin J Aeronaut, 2020, 30, (9), pp 24452460. doi: 10.1016/j.cja.2019.07.015 CrossRefGoogle Scholar
Love, A. Some highlights in reflector antenna development, Radio Sci, 1976, 11, (8), pp 674684. doi: 10.01029/RS011li008p00671 CrossRefGoogle Scholar
Shen, Y.Z., Lin, G.C. and Wang, C.G., Shape adjustment of flexible rib for large deployable reflector, AIAA J, 2019, 57, (10), pp 45694576. doi: 10.2514/1.J058113 CrossRefGoogle Scholar
Wang, T., Liu, R.Q., Yang, H., Cong, Q. and Guo, J.W. Design and deployment analysis of modular deployable structure for large antennas, J Spacecraft Rockets, 2015, 52, (4), pp 11011111. doi: 10.2514/1.A33127 CrossRefGoogle Scholar
Ma, X.F., Li, Y., Li, T.J., Design and analysis of a novel deployable hexagonal prism module for parabolic cylinder antenna, Mech Sci, 2021, 12, (1), pp 918. doi: 10.5194/ms-12-9-2021 CrossRefGoogle Scholar
Izzo, D., Pettazzi, Z. and Ayre, M., Mission concept for autonomous on orbit assembly of a large reflector in space, 56th Int Astronaut Congr, 2005, 5, (3). doi: 10.1.512.6639 Google Scholar
Huang, H.L., Li, B. and Qi, X.Z. Design of large scale surface deployable mechanisms with kinematic redundant constraints, J Mech Des, 2019, 141, (1), p 012301. doi: 10.1115/1.4041178 CrossRefGoogle Scholar
Shi, C., Guo, H.W., Zhang, Z.G., et al. Conceptual configuration synthesis and topology structure analysis of double-layer hoop deployable antenna unit, Mech Mach Theory, 2018, 129, pp 232260. doi: 10.1016/j.mechmachtheory.2018.08.005 CrossRefGoogle Scholar
Tomyuki, N., Takashi, K. and Takashi, O. Design and implementation of robust symmetric attitude controller for ETS-VIII, Control Eng Pract, 2010, 18, pp 14401451. doi: 10.10 16/j.cone ngprac.2009.05.003 Google Scholar
Guo, J.W., Zhao, Y.S., Xu, Y.D., et al. Design and analysis of truss deployable antenna mechanism based on a novel symmetric hexagonal profile division method, Chin J Aeronaut. 2021, 34, (8), pp 97100. doi: 10.1016/j.conengprac.2009.05.003 CrossRefGoogle Scholar
Guo, J.W., Zhao, Y.S., Xu, Y.D., et al. A novel modular deployable mechanism for the truss antenna: assembly principle and performance analysis, Aerosp Sci Technol 2020, 105, p 105976. doi: 10.1016/j.ast.2020.105976 CrossRefGoogle Scholar
Dong, H.J., Li, T.J., Wang, Z.W. and Ning, Y.M. Design and experiment of a piezoelectric actuator based on inchworm working principle, Sens Actuat A-phys, 2020, 306, pp 11950. doi: 10.1016/j.sna.2020.111950 CrossRefGoogle Scholar
Li, H., Deng, J., Zhang, S., Hu, H. and Liu, Y. Design and experiment of a three-feet linear Ultrasonic Motor using third bending hybrid modes. Sens Actuat A-Phys, 2021, 40, p 112990. doi: 10.1016/j.sna.2021.112990 CrossRefGoogle Scholar
Chen, G.L., Wang, H. and Lin, Z.Q. A unified approach to the accuracy analysis of the planar parallel manipulators both with input uncertainties and joint clearance, Mech Mach Theory, 2013, 64, pp 117. doi: 10.1088/1742-6596/1345/2/022051 CrossRefGoogle Scholar
Fu, G.Q., Fu, J.Z. and Shen, H.Y. Product-of-exponential formulas for precision enhancement of five-axis machine tools via geometric error modeling and compensation, Int J Adv Manuf Tech, 2015, 81, pp 289305. doi: 10.1 007/s00170-015-7035-0 CrossRefGoogle Scholar