Article contents
DLR natural and hybrid transonic laminar wing design incorporating new methodologies
Published online by Cambridge University Press: 27 January 2016
Abstract
In the present work natural laminar flow (NLF) and hybrid laminar flow (HLF) wing designs are presented which were obtained by combining new methodologies with experience and knowledge obtained with traditional laminar wing design methods. The NLF wing design is performed for wing-body configurations with backward swept wing (BSW) and forward swept wing (FSW). Initial aerofoil sections were obtained by using a new sectional conical wing method which allows the design of transonic wing sections, taking into account the effects of sweep and taper for the computational cost of a 2D method. Except for flow regions with strong 3D influence, wings constructed with these aerofoils showed an acceptably large region with laminar boundary layer and small shocks at design and specified off-design conditions. For regions close to the body and the tip a 3D inverse design method was further required. For the BSW case, due to cross flow a premature transition occurred. Therefore, a HLF panel was required to obtain a larger laminar region. A suction distribution was obtained using the suction distribution module of the automated target pressure generator (ATPG). This generator optimises the pressure distributions in terms of minimising drag while keeping certain boundary conditions constant, e.g. lift and momentum. Using the ATPG, the laminar extent of the BSW NLF design could be further improved for the inboard wing. With the new methodologies design work was reduced. They lead to a design with reserves that allow for acceptable off-design performance qualities by keeping the wing laminar over a wide range of flight conditions.
- Type
- Research Article
- Information
- Copyright
- Copyright © Royal Aeronautical Society 2015
References
- 16
- Cited by