Published online by Cambridge University Press: 22 November 2016
In this paper, we proposed a simple approach to analyse the efficiency and propulsive characteristics of the high-altitude propeller in accordance to the Vortex Lattice Lifting line Method (VLM) theory, which is commonly used in preliminary design and parametric studies of propeller propulsion. The Computational Fluid Dynamics (CFD) method was used to obtain aerofoil aerodynamic data. The optimal pitch angle and propeller blade chord length (along the radial direction) can be calculated using the information from the database. The propeller wake model sees helical slipstreams applied to both lightly and moderately loaded propellers. The proposed method is capable of identifying the optimal efficiency through varying the number of propeller blades, radius and the rotational speed. The relationship between the optimal efficiency and design parameters is then established. This method was verified using CFD calculations.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.