Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T01:06:22.718Z Has data issue: false hasContentIssue false

Flame Quenching

Published online by Cambridge University Press:  04 July 2016

Extract

The possibility of explosions in a duct or chambers, which may contain a mixture of an explosive vapour and air, is a hazard commonly occurring in industrial plant, often necessitating a very strong and costly form of construction which would otherwise not be required. Where the structure is not strong enough to withstand explosion pressures serious damage results, frequently with injury to personnel.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Annand, W. J. D. (1953). The Resistance to Air Flow of Wire Gauzes. Journal of the Royal Aeronautical Society, Vol. 57, 141146, 1953.Google Scholar
2 Berl, E. and Barth, K. (1933). Untersuchungen über Explosionsgrenzen und über Sicherung vor weiterleitung von Gasexplosionen. (Experiments on explosion limits and prevention of further propagation of gaseous explosions). Z. Elektrochem. Vol. 39, 7375, 1933.Google Scholar
3.Berlad, A. L. and Belles, F. E. (1955). Chain Breaking and Branching in the Active-Particle Diffusion Concept of Quenching. U.S. N.A.C.A. T.N. 3409, 1955.Google Scholar
4. *Berlad, A. L. and Potter, A. E. (1954). Effect of Channel Geometry on the Quenching of Laminar Flames. U.S. N.A.C.A. RM E54C05, 1954.Google Scholar
5. *Berlad, A. L. and Potter, A. E. (1955). A Thermal Equation for Flame Quenching. U.S. N.A.C.A. T.N. 3398, 1955.Google Scholar
6. *Berlad, A. L. and Potter, A. E. (1955). Prediction of the Quenching Effect of Various Surface Geometries. 5th Symposium (International) on Combustion, Reinhold, 728735, 1955.Google Scholar
7.Beyling, , —. —. (1906). Versuche zwecks Erprobung der Schlagwettersicherheit besonders geschiitzter elektrischer Motoren und Apparate. (Experiments to Test the Safety of Electrical Motors and Apparatus in Fire-Damp.) Gliickauf, Vol. 42, 19, 34–42, 70–74, 93–99, 129–138, 165–171, 201–206, 237–244, 273–278, 301–306, 338–346, 373–383, 409–418, 1906.Google Scholar
8.Ten Bosch, M. (1936). Die Wärmeüibertragung. ﹛Heat Transmission). Springer, Berlin, 1936.Google Scholar
9.Burgoyne, J. H. and Weinberg, F. J. (1953). A Method of Analysis of a Plane Combustion Wave. 4th Symposium (International) on Combustion. Williams and Wilkins, 294302, 1953.Google Scholar
10.Burgoyne, J. H. and Weinberg, F. J. (1954). Determina tion of the Distribution of Some Parameters Across the Combustion Zone of a Flat Flame. Proceedings of the Royal Society, A224, 286308, 1954.Google Scholar
11.Burgoyne, J. H. and Weinberg, F. J. (1954). “ Excess Energy” Hypothesis of Flame Behaviour. Fuel, Vol. 33, 436447, 1954.Google Scholar
12.Burgoyne, J. H. and Newitt, D. M. (1955). Crankcase Explosions in Marine Engines. Transactions of the Institute of Marine Engineers, Vol. 67, 255270, 1955.Google Scholar
Chapman, W. R. and Wheeler, R. V.: see Wheeler, R. V. and Chapman, W. R.Google Scholar
13.Coward, H. F. and Jones, G. W. (1927). Mechanism of the Uniform Movement in the Propagation of Flame. Journal of the American Chemical Society, Vol. 49, 386 396, 1927.Google Scholar
14.Coward, H. F. and Meiter, E. G. (1927). Chemical Action in the Electric Spark Discharge. The Ignition of Methane. Journal of the American Chemical Society, Vol. 49, 396409, 1927.Google Scholar
15.Coward, H. F. and Hartwell, F. J. (1932). Studies in the Mechanism of Flame Movement. Part I—The Uniform Movement of Flame in Mixtures of Methane and Air, in Relation to Tube Diameter. Journal of the Chemical Society, 19962004, 1932.CrossRefGoogle Scholar
16.Coward, H. F. and Hartwell, F. J. (1932). Studies in the Mechanism of Flame Movement. Part II—The Fundamental Speed of Flame in Mixtures of Methane and Air. Journal of the Chemical Society, 26762684, 1932.Google Scholar
17.Coward, H. F. (1934). Ignition Temperatures of Gases. ” Concentric Tube” Experiments of (the Late) H. B. Dixon. Journal of the Chemical Society, 13821406, 1934.Google Scholar
18.Coward, H. F.and Jones, G. W. (1952). Limits of Flammability of Gases and Vapors. U.S. Bur. Mines Bulletin 503, 1952Google Scholar
Coward, H. F. and Wheeler, R. V. see Wheeler, R. V. and Coward, H. F.Google Scholar
19.Daniell, P. J. (1930), The Theory of Flame Motion. Proceedings of the Royal Society, A126, 393405, 1930.Google Scholar
20.David, W. T. (1926). Radiation in Gaseous Explosions. Trans, of the Faraday Society, Vol. 22, 273280, 1926.Google Scholar
21.Davy, H. (1816). On the Fire-Damp of Coal Mines, and the Methods of Lighting the Mines so as to Prevent Explosions (etc.). Phil. Trans. Roy. Soc, 122, 23–24, 115–119, 1816; Phil. Mag., Vol. 48, 5159, 197-200, 1816.Google Scholar
22.Dixon, H. B, Harwood, J., and Higgins, W. F., (1926). On the Ignition-Point of Gases. Transactions of the Faraday Society, Vol. 22, 267272, 1926.Google Scholar
23.Egerton, A. C. (1953). Limits of Inflammability. 4th Sym posium (International) on Combustion, Williams and Wilkins, 413, 1953.Google Scholar
24.Egerton, A. C, Everett, A. J. and Moore, N. P. W. (1953). Sintered Metals as Flame Traps. 4th Symposium (International) on Combustion, Williams and Wilkins, 689695, 1953.Google Scholar
25.Elston, J. (1950). Influence des parois et des gaz diluants sur les domaines d'inflammabilité de l'hydrogène et du méthane. (Influence of the Walls and of Gaseous Diluents on the Ranges of Inflammability of Hydrogen and Méthane). Memorial des Services Chimiques de l'Etat, Vol. 35, 87132, 1950.Google Scholar
26.Evans, M. W. (1952). Current Theoretical Concepts of Steady-State Flame Propagation. Chemical Reviews, Vol. 51, 363429, 1952.Google Scholar
27.Frank, C. E. and Blackham, A. U. (1952). Spontaneous Ignition of Organic Compounds. Industrial and Engineering Chemistry, Vol. 44, 862867, 1952.Google Scholar
28.Freeston, H. G., Roberts, J. D. and Thomas, A. (1956). Crankcase Explosions: an Investigation into Some Factors Governing the Selection of Protective Devices. Proceedings of Inst, of Mechanical Engineers, 170, 811 24, 1956.Google Scholar
29.Friedman, R. (1949). The Quenching of Laminar Oxy- hydrogen Flames by Solid Surfaces. 3rd Symposium on Combustion, Flame and Explosion Phenomena. Williams and Wilkins, 110120, 1949.Google Scholar
30.Friedman, R. (1953). Measurement of the Temperature Profile in a Laminar Flame. 4th Symposium (International) on Combustion, Williams and Wilkins, 259263, 1953.Google Scholar
31.Friedman, R. and Burke, E. (1949.) Spark Ignition of Gas Mixtures. Journal of Chemical Physics, Vol. 17, 667, 1949.Google Scholar
32.Friedman, R. and Johnston, W. C. (1950). The Wall- quenching of Laminar Propane Flames as a Function of Pressure, Temperature and Air/Fuel Ratio. Journal of Applied Physics, Vol. 21, 791795, 1950.Google Scholar
33.Garner, W. E. and Saunders, S. W. (1926). Ionisation in Gaseous Explosions. Trans, of the Faraday Society, Vol. 22, 281288, 1926.Google Scholar
34.Garner, W. E. and Johnson, C. H. (1928). The Effect of Catalysts on the Speed of Flame, Infra-Red Emission, and Ionisation During the Combustion of Carbon Monoxide and Oxygen. Journal of the Chemical Society, 280298, 1928.Google Scholar
35.Gaydon, A. G. and Wolfhard, H. G. (1953). Flames: Their Structure, Radiation and Temperature. Chapman and Hall, London, 1953.Google Scholar
36.Gregory, H. and Archer, C. T. (1926). Experimental Determination of the Thermal Conductivities of Gases. Proceedings of the Royal Society, A110, 91122, 1926.Google Scholar
Grice, C. S. W. and Wheeler, R. V.: see Wheeler, R. V. and Grice, C. S. W.Google Scholar
37.Grootenhuis, P. (1949). The Flow of Gases Through Porous Metal Compacts. Engineering, Vol. 167, 291292, 1949.Google Scholar
38.Gross, R. A. (1955). Flame-Generated Turbulence. Jet Propulsion, Vol. 25, 716, 1955.Google Scholar
39.Haward, W. A. and Otagawa, T. (1916). The Propagation of Flame in Mixtures of Hydrogen and Air. The “ Uniform Movement.” Journal of the Chemical Society, Vol. 109, 8389, 1916.Google Scholar
40.Helmore, W. (1929). Experiments on Flame Extinction in Gaseous Mixtures. A.R.C. R. & M. 1266, 1929.Google Scholar
41. *Helmore, W., Swan, A. and Clothier, W. C. (1932). Reduction of Fire Risk by Induction Pipe Flame Traps. A.R.C. R. & M. 1484, 27 pp., 1932.Google Scholar
42.Helmore, W. An Improved Trap for Flame Resulting from Explosion of Gases in a Conduit. British Patent 344806.Google Scholar
43.Henderson, E. (1941). Combustible Gas Mixtures in Pipe Lines. Proceedings of the Pacific Coast Gas Association, Vol. 32, 98111, 1941.Google Scholar
44.Holm, J. M. (1932). On the Initiation of Gaseous Explosions by Small Flames. Phil. Mag., 14, 1856, 1932.Google Scholar
45.Holm, J. M. (1933). On the Ignition of Explosive Gaseous Mixtures by Small Flames. Phil. Mag. Vol. 15, 329359, 1933.Google Scholar
46.James, R. S. (1950). Effect of Temperature on Flame-Arresting Properties of Flat Joints in Explosion-Proof Mine Equipment. U.S. Bur. Mines Rep. Invest. 4639. 1950.Google Scholar
47.Jones, E. T., Morgan, J. D. and Wheeler, R. V. (1922). On the Form of the Temperature Wave Spreading by Conduction from Point and Spherical Sources; With a Suggested Application to the Problem of Spark Ignition. Phil. Mag., Vol. 43, 359368, 1922.Google Scholar
48.Jost, W. (1946). Explosion and Combustion Processes in Gases. (Trans. H. O. CROFT). McGraw Hill, 1946.Google Scholar
49.Karlovitz, B. (1954). A Turbulent Flame Theory Derived from Experiments. Selected Combustion Problems. Butterworth Sci. Publ., 248262, 1954.Google Scholar
50.Klaukens, H. and Wolfhard, H. G. (1948). Measurements in the Reaction Zone of a Bunsen Flame. Proceedings of the Royal Society, A193, 512524, 1948.Google Scholar
51.Lamb, J. (1952). Explosions in Enclosed Crankcases of Reciprocating Engines: Their Cause, Effect and Possible Remedy. Proceedings of the Institution of Mechanical Engineers, Vol. 166, 327349, 1952.Google Scholar
52.Lewis, B. and Von Elbe, G. (1934). On the Theory of Flame Propagation. Journal of Chemical Physics, Vol. 2, 537546, 1934.Google Scholar
53.Lewis, B. and Von Elbe, G. (1947). Ignition of Explosive Gas Mixtures by Electric Sparks. II—Theory of Propagation of Flame from an Instantaneous Point Source of Ignition. Journal of Chemical Physics, Vol. 15, 803808, 1947.Google Scholar
54.Lewis, B. and Von Elbe, G. (1949). Theory of Ignition, Quenching and Stabilization of Flames of Non-Turbulent Gas Mixtures. 3rd Symposium on Combustion, Flame and Explosion Phenomena. Williams and Wilkins, 6879, 1949.Google Scholar
55.Lewis, B. and Von Elbe, G. (1951). Combustion, Flames and Explosions of Gases. Academic Press. 1951.Google Scholar
56.Lind, S. C. (1924). A Note on Ionisation in Explosions. Journal of the Chemical Society, 125, 18671869, 1924.Google Scholar
57.Lind, S. C. (1926). Ionisation and Gaseous Explosions. Transactions of the Faraday Society, 22, 289291, 1926.Google Scholar
58.Linnett, J. W. (1954). Some Experimental Results Relating to Laminar Flame Propagation. Selected Combustion Problems. Butterworth Sci. Publ., 92110, 1954.Google Scholar
59.Mallard, E. and Le Chatelier, H. L. (1883). Recherches expérimentales et théoriques sur la combustion des mélanges gazeux explosifs. (Experimental and Theoretical Research on the Combustion of Explosive Gaseous Mixtures). Annates des Mines, 8th series, Vol. 4, 274 568, 1883.Google Scholar
60.Mansfield, W. P. (1956). Crankcase Explosions: Development of New Protective Devices. Proceedings of Inst, of Mechanical Engineers, 170, 825-44, 1956.Google Scholar
Mason, W. and Wheeler, R. V.: see Wheeler, R. V. and Mason, W.Google Scholar
61.McDavid, J. W. (1917). The Temperature of Ignition of Gaseous Mixtures. Journal of the Chemical Society, Vol. 111, 10031015, 1917.Google Scholar
62.Mickelsen, W. R. and Ernstein, N. E. (1955). Effect of Turbulence on Free Flame Growth. Journal of Chemical Physics, Vol. 23, 1558, 1955.Google Scholar
63.Montenero, R. O. (1952). Crankcase Explosions can be Contained. A.S.M.E. Paper No. 52-A-136, 1952.Google Scholar
64.Müller-Hillebrand, D., (1938). Explosionsvorgänge als Grundlage für die Bemessung druckfester Kapselungen von elektrischen Geräten und Motoren. (Explosion Processes as the Basis for Dimensioning Pressure-Tight Casings of Electrical Apparatus and Motors.) Elektro- tech. Z., Vol. 59, 11161123, 1938.Google Scholar
65.Mullins, B. P. (1953). Studies on the Spontaneous Ignition of Fuels Injected into a Hot Air Stream. Fuel, Vol. 32, 211252, 327-379, 1953.Google Scholar
66.Nutall, L. (1949). Tables of Thermal Properties of Gases. U.S. Nat. Bur. of Standards. N.A.C.A. Table 2.42, 1949.Google Scholar
67.Olsen, H. L. and Gayhart, E. L. (1955). Effect of Turbulence on Incipient Flame Propagation. Journal of Chemical Physics, Vol. 23, 402403, 1955.Google Scholar
68.Parker, A. and Rhead, A. V. (1914). The Velocities of Flame in Mixtures of Methane and Air. Journal of the Chemical Society, Vol. 105, 21502158, 1914.Google Scholar
Payman, W. and Wheeler, R. V.: see Wheeler, R. V. and Payman, W.Potter, A. E. and Berlad, A. L.: see Berlad, A. L. and Potter, A. E.Google Scholar
69.Radier, H. H. (1939). Flame Arresters. Journal of the Institute of Petroleum, Vol. 25, 377381, 1939.Google Scholar
70.Rainford, H. (1948). A Review of Flameproof Testing. 19221947. H.M.S.O., 1948.Google Scholar
71.Rainford, H. and Statham, I. C. F. (1931). Flameproof Electrical Apparatus. Fuel, Vol. 10, 504520, 1931.Google Scholar
72.Ribaud, G. (1930). Température des flammes; rayonnement des gaz incandescents et des flammes. (Temperature of Flames; Radiation from Incandescent Gases and Flames.) Hermann et Cie, Paris, 1930.Google Scholar
73.Ribaud, G. (1952). Constantes thermodynamiques des gaz aux températures élevées. (Thermodynamic Constants of Gases at High Temperatures.) Publ. Sci. Minist. Air France. NT 266, 1952.Google Scholar
Robinson, H. and Wheeler, R. V.: see Wheeler, R. V. and Robinson, H.Google Scholar
74.Scott, G. S., Jones, G. W. and Scott, F. E. (1948). Determination of Ignition Temperatures of Combustible Liquids and Gases. Modification of the Drop Method Apparatus. Analytical Chemistry, Vol. 20, 238241, 1948.Google Scholar
75.Semenov, N. N. (1942). Thermal Theory of Combustion and Explosion—III. Theory of Normal Flame Propaga tion. U.S. N.A.C.A. TM1026, 1942.Google Scholar
76.Simon, D. M. (1951). A Comparison of Quenching Distance and Inflammability Limit Data for Propane-Air Flames. Journal of Applied Physics, 22, 103, 1951.Google Scholar
77.Simon, D. M. (1954). Diffusion Processes as Rate-Con trolling Steps in Laminar Flame Propagation. Selected Combustion Problems, Butterworths, 5991, 1954.Google Scholar
78.Simon, D. M., Belles, F. E. and Spakowski, A. E. (1953). Investigation and Interpretation of the Flam-mability Region for Some Lean Hydrocarbon/Air Mixtures. 4th Symposium ﹛International) on Combustion. Williams and Wilkins, 126138, 1953.Google Scholar
79.Smith, J. B. (1949). Explosion Pressures in Industrial Piping Systems. Proceedings of the International Acetylene Association, 279293, 1949.Google Scholar
Statham, I. C. F. and Wheeler, R. V.: see Wheeler, R. V. and Statham, I. C. F.Google Scholar
80.Steinicke, H. (1948). Verbrennung von Gasluftgemischen in Rohren. (Combustion of Gas-Air Mixtures in Pipes.) Z. Ver. Dtsch. Ing., Vol. 90, 350, 1948.Google Scholar
81.Stops, D. W. (1949). Effect of Temperature Upon the Thermal Conductivity of Gases. Nature, Vol. 164, 966967, 1949.Google Scholar
82.Summerfield, M., Reiter, S. H., Kebely, V. and Mascolo, R. W. (1954). The Physical Structure of Tub-bulent Flames. Jet Propulsion, Vol. 24, 254255, 1954.Google Scholar
Swan, A., Helmore, W. and Clothier, W. C.: see Helmore, W., Swan, A. and Clothier, W. C.Google Scholar
83. (a)Taylor, G. I. (1944). Air Resistance of a Flat Plate of Very Porous Material. A.R.C. R. & M. 2236, 1944.Google Scholar
(b) Taylor, G. I. and Davies, R. M. (1944). The Aero-dynamics of Porous Sheets. A.R.C. R. & M. 2237, 1944.Google Scholar
84.Thring, M. W. (1952). The Science of Flames and Furnaces. Chapman and Hall, London, 1952.Google Scholar
Walls, N. S., Wheeler, R. V., Rintoul, W. and White, A. G.: see Wheeler, R. V., Walls, N. S.et al.Google Scholar
85.Weinberg, F. J. (1954). An Investigation into Mechanisms of Flame Propagation in Gases. Lond. Univ. Ph.D. Thesis, 1954.Google Scholar
86.Wheeler, R. V. (1920). Ignition by the Impulsive Electrical Discharge. Mixtures of Methane and Air. Journal of the Chemical Society, Vol. 117, 903917, 1920.Google Scholar
87.Wheeler, R. V. (1914). The Propagation of Flame in Mixtures of Methane and Air. The “ Uniform Movement.” Journal of the Chemical Society, Vol. 105, 26062613, 1914.Google Scholar
88. *Wheeler, R. V. and Mason, W. (1917-1918). The “Uniform Movement” During the Propagation of Flame. Journal of the Chemical Society, Vol. 111, 10441057, 1917; Vol. 113, 45-57, 1918.Google Scholar
89. *Wheeler, R. V. and Mason, W. (1920). The Propagation of Flame in Mixtures of Methane and Air. Part II. Vertical Propagation. Journal of the Chemical Society, 117, 12271237, 1920.Google Scholar
90. *Wheeler, R. V. and Mason, W. (1920). The Propagation of Flame in Mixtures of Methane and Air. Part III. Propagation in Currents of the Mixtures. Journal of the Chemical Society, Vol. 117, 12371240, 1920.Google Scholar
91. *Wheeler, R. V. and Chapman, W. R. (1926). The Propagation of Flame in Mixtures of Methane and Air. Part IV. The Effect of Restrictions in the Path of the Flame. Journal of Chemical Society, 21392147, 1926.Google Scholar
92. *Wheeler, R. V. and Chapman, W. R. (1927). The Propagation of Flame in Mixtures of Methane and Air. Part V. The Movement of the Medium in which the Flame Travels. Journal of the Chemical Society, 3846, 1927.Google Scholar
93. *Wheeler, R. V. and Payman, W. (1918). The Propagation of Flame Through Tubes of Small Diameter. Part I. Journal of the Chemical Society, 113, 656666, 1918.Google Scholar
94. *Wheeler, R. V. and Payman, W. (1919). The Propagation of Flame Through Tubes of Small Diameter. Part II. Journal of the Chemical Society, Vol. 115, 3645, 1919.Google Scholar
95. *Wheeler, R. V. and Robinson, H. (1933). Explosions of Methane and Air: Propagation Through a Restricted Tube. Journal of the Chemical Society, 758760, 1933.Google Scholar
96. *Wheeler, R. V. and Grice, C. S. W. (1926). Flameproof Electrical Apparatus for Use in Coal Mines. Second Report: Perforated Plate Protection. Safety in Mines Research Board. Paper 21, 1926.Google Scholar
97. *Wheeler, R. V., Walls, N. S., Rintoul, W. and White, A. G. (1926). The Ignition of Firedamp by Momentary Flames. Safety in Mines Research Board. Paper 24, 1926.Google Scholar
98. *Wheeler, . V. and Statham, I. C. F. (1930). Flame-proof Electrical Apparatus for Use in Coal Mines. Summary. Safety in Mines Research Board. Paper 60, 1930.Google Scholar
99. *Wheeler, R. V. and Coward, H. F. (1934). The Movement of Flame in Firedamp Explosions. Safety in Mines Research Board. Paper 82, 1934.Google Scholar
100.White, A. G. (1922). Limits for the Propagation of Flame in Vapour-Air Mixtures. Part I. Mixtures of Air and One Vapour at the Ordinary Temperature and Presure. Journal of the Chemical Society, Vol. 121, 12441270, 1922.Google Scholar
101.White, A. G. (1925). Limits for the Propagation of Flame in Inflammable Gas-Air, Mixtures. Part II. Mixtures of More Than One Gas and Air. Journal of the Chemical Society, Vol. 127, 4861, 1925.CrossRefGoogle Scholar
102.White, A. G. (1925). Limits for the Propagation of Flame in Inflammable Gas-Air Mixtures. Part III. The Effect of Temperature on the Limits. Journal of the Chemical Society, Vol. 127, 672684, 1925.Google Scholar