Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T02:46:50.483Z Has data issue: false hasContentIssue false

The Flexural Centre or Centre of Shear

Published online by Cambridge University Press:  28 July 2016

W. T. Koiter*
Affiliation:
Delft University

Extract

In view of the recent notes in this Journal by Professors Jacobs and Duncan, it may be of interest to give some additional references to investigations of the flexural centre of beams, which otherwise might be overlooked, and to add some remarks which seem to have escaped the attention of previous writers.

Although the earliest investigation seems to have been published by Griffith and Taylor (Ref. 4 of Duncan's paper), Eggenschwyler gave an independent discussion of the problem for narrow beams. Considerable progress was made by Weber in two papers, published in 1924 and 1926. Similar results were obtained by Schwalbe, who was apparently unaware of Weber's previous investigations.

Type
Technical Notes
Copyright
Copyright © Royal Aeronautical Society 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jacobs, J. A. (1953). The Centre of Shear of Aerofoil Sections. Journal of the Royal Aeronautical Society, April 1953.Google Scholar
2. Duncan, W. J. (1953). The Flexural Centre or Centre of Shear. Journal of the Royal Aeronautical Society, September 1953.Google Scholar
3. Eggenschwyler, A. (1920). Biegungsachse. Schweizerische Bauzeitung, Bd 76, p. 266.Google Scholar
4. Weber, C. (1924). Biegung und Schub in geraden Balken. Zeitschrift für Angewandte Mathematik und Mechanik, Bd 4, p. 334.Google Scholar
5. Weber, C. (1926). Uebertragung des Drehmomentes in Balken mit doppelflanschigem Querschnitt. Zeitschrift für Angewandte Mathematik und Mechanik, Bd 6, p. 85.Google Scholar
6. Schwalbe, W. L. (1935). Ueber den Schubmittelpunkt in einem durch eine Einzellast gebogenen Balken. Zeitschrift für Angewandte Mathematik und Mechanik, Bd 15, p. 138.Google Scholar
7. Van der Neut, A. (1931). Torsie en afschuiving van meervoudig samenhangende doosliggers. De Ingenieur (1931), No. 50 and Verslagen en Verhandelingen van den Rijks-Studiedienst voor de Luchtvaart, Vol. 7, rapport S 48.Google Scholar
8. Leibenson, L. S. (1935). On the flexural centre of closed, thin-walled sections. Comptes Rendus (Doklady) de l'Academie des Sciences de 1' U.S.S.R. (1935), Vol. III (VIII), No. 5 (65).Google Scholar
9. Koiter, W. T. (1939). Het torsiecentrum van balken onder belasting door dwarskrachten. Verslagen en Verhandelingen Nationaal Luchtvaart Laboratorium, Vol. 8, p. 171, rapport S 156.Google Scholar
10. Timoshenko, S. and Goodier, J. N. (1951). Theory of Elasticity, 2nd edition, Art 101. McGraw-Hill.Google Scholar
11. Koiter, W. T. (1945). Over de stabiliteit van het elastisch evenwicht, Diss. Delft; stelling 6.Google Scholar
12. Love, A. E. H. (1927). Mathematical Theory of Elasticity. 4th edition, Art 241. Cambridge University Press.Google Scholar