Published online by Cambridge University Press: 03 February 2016
The present paper reviews and discusses the physical mechanisms of noise generation and reduction in turbulent flows with their applications towards aircraft noise reduction at takeoff and on the approach. This work began in 1948 when Lilley undertook an experimental investigation into the source of jet noise as a necessary precursor to finding methods for the reduction of high speed jet engine noise on civil jet airliners. Westley and Lilley completed this experimental programme in 1951, which included the design of a range of devices for high speed jet noise reduction. It was about this time that similar studies on jet noise were being started elsewhere and in particular by Lassiter and Hubbard in USA. The major contribution to the subject of turbulence as a source of noise came from Sir James Lighthill’s remarkable theory in 1952. In spite of the difficulties attached to theoretical and experimental studies on noise from turbulence, it is shown that with the accumulated knowledge on aerodynamic noise over the past 50 years, together with an optimisation of aircraft operations including flight trajectories, we are today on the threshold of approaching the design of commercial aircraft with turbofan propulsion engines that will not be heard above the background noise of the airport at takeoff and landing beyond 1-2km, from the airport boundary fence.
It is evident that in the application of this work, which centres on the physical mechanisms relating to the generation of noise from turbulence and turbulent shear flows, to jet noise, there is not one unique mechanism of jet noise generation for all jet Mach numbers. This author in this publication has concentrated on what appears to be the dominant mechanism of noise generation from turbulence, where the mean convection speeds of the turbulence are subsonic. The noise generated at transonic and supersonic jet speeds invariably involves extra mechanisms, which are only briefly referred to here.