Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T13:13:42.879Z Has data issue: false hasContentIssue false

The Pressure Rise with Subsonic Mach Number on Fuselages and Nacelles

Published online by Cambridge University Press:  28 July 2016

D. E. Hartley*
Affiliation:
formerlyRoyal Aircraft Establishment, now withHeat Exchangers Ltd.

Extract

In treating the compressible subsonic flow by the Prandtl-Glauert method as extended by Göthert, the velocity increment v in the direction of the main stream is found to be 1/β2 times the corresponding velocity increment va on the analogous body in incompressible flow; the analogous body being obtained by reducing the lateral dimensions of the real body in the ratio β:1.

Type
Technical Notes
Copyright
Copyright © Royal Aeronautical Society 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Göthert, B. (1941). Ebene und räumliche Strömung bei hohen Unterschallgeschwindigkeiten. Jahrb. d. deutschen Luftfahrtforschung 1941, p. I 156.Google Scholar
2. Sears, W. R. (1947). A second note on Compressible Flow about Bodies of Revolution. Quarterly of Applied Mathematics, Vol. 5, p. 89, 1947.Google Scholar
3. Laitone, E. V. (1947). The Subsonic Flow about a Body of Revolution. Quarterly of Applied Mathematics, Vol. 5, p. 227, 1947.CrossRefGoogle Scholar
4. Young, A. D. and Kirkby, S. (1947). Application of the Linear Perturbation Theory to Compressible Flow about Bodies of Revolution. Cranfield Report No. 11, 1947.Google Scholar
5. Reissner, E. (1949). On Compressibility Corrections for Subsonic Flow over Bodies of Revolution. N.A.C.A. T.N. 1815, 1949.Google Scholar
6. Van Driest, E. R. (1949). Die linearisierte Theorie des dreidimensionalen kompressiblen Unterschallströmung und die experimentelle Untersuchung von Rotationskörpern in einen geschlossenen Windkanal. Mitt. a.d. Inst, f. Aerodyn. E.T.H. Zurich, Nr. 16, 1949.Google Scholar
7. Matthews, C. W. (1952). A Comparison of the Experimental Subsonic Pressure Distributions about several Bodies of Revolution with Pressure Distributions computed by means of the Linearised Theory N.A.C.A. T.N. 2519, 1952.Google Scholar
8. Rabineau, B. A. (1952). Compressibility Corrections for Bodies at Revolution. Journal of the Aeronautical Sciences, Vol. 19, March 1952, p. 197.CrossRefGoogle Scholar
9. Oswatitsch, K. (1950). The Effect of Compressibility on the Flow around Slender Bodies of Revolution. Swedish Report KTH—Aero T.N. 12, 1950.Google Scholar
10. KÜChemann, D. (1951). A Simple Rule for the Velocity Rise with Subsonic Mach Number on Ellipsoids of Revolution. Journal of the Aeronautical Sciences, Vol. 18, p. 770, November 1951.CrossRefGoogle Scholar
11. KÜChemann, D. and Weber, J. The Subsonic Flow past Swept Wings at Zero Lift Without and With Body. To be published by A.R.C. as R. & M. 2908.Google Scholar