Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T05:37:12.714Z Has data issue: false hasContentIssue false

Recent Evolution in Problems and Methods in Aerodynamics

Published online by Cambridge University Press:  04 July 2016

P. Germain*
Affiliation:
ONERA

Extract

The Tenth Lanchester Memorial Lecture “Recent Evolution in Problems and Methods in Aerodynamics” was given before the Society on 11th May 1967 by Professor Paul Germain, Director General of ONERA. The Chair was taken by the President, Mr. M. B. Morgan, CB, MA, CEng, FRAeS.

Opening the proceedings the President said that they had had a memorable series of lectures in memory of that great man Lanchester and at many of them it had been a great pleasure to have with them his widow, and his brother Mr. George Lanchester and his wife. They were delighted to have them present that evening.

They were fortunate to have as their lecturer Professor Germain, a distinguished French Scientist. It was particularly appropriate that their lecturer should come from France when Franco-British aeronautical ties were already close. Professor Germain was well known to the aeronautical research fraternity. Born at St. Malo in 1920, after graduating in Paris he joined ONERA and later became Professor at, first, Poitiers, then Lille and Paris. Since 1962 he had been Director of ONERA. His theoretical work in the transonic and supersonic aerodynamics fields was well known and they also knew him well personally because he had paid numerous visits to research centres in this country.

Professor Germain was France’s National delegate to AGARD and Mr. Morgan knew from personal knowledge the intense interest Professor Germain had taken in that international organisation. He held an Honorary Doctorate from Louvain University, was a Correspondent of the Academy of Sciences, Paris, a Fellow of the American Institute of Aeronautics and Astronautics, a Foreign Honorary Member of the American Academy of Arts and Sciences and a member of the International Academy of Astronautics.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adams, M. C. and Sears, W. R.Slender Body Theory-Review and Extensions. J Aeron Sci, Vol 20, pp 8598, 1953.Google Scholar
2.Ashley, H. and Landahl, M. T.Aerodynamics of Wings and Bodies. Addison-Wesley Co, Reading, Mass, 1965.Google Scholar
3.Babenko, K. I., Voskressensky, G. B., Liubimov, A. N. and Russanov, V. V.Ecoulement tridimensionnel dungaz idéal autour d’un corps régulier. Editions Scientifiques, Moscou, 1964.Google Scholar
4.Bagley, J. A. Some Aerodynamic Principles for the Design of Swept Wings. RAE Report Aero 2650, 1961.Google Scholar
5.Batchelor, G. K.On Steady Laminar Flow with Closed Streamlines at Large Reynolds Number. J Fluid Mech, Vol 1, pp 177190, 1956.CrossRefGoogle Scholar
6.Bohachevsky, I. O. and Mates, R. E.A Direct Method for Calculation of the Flow About an Axisymmetric Blunt Body at Angle of Attack. AIAA Journal, Vol 4, pp 776782, 1966.Google Scholar
7.Brun, J. M. Le calcul des ailes en supersonique stationnaire et instationnaire grâce à un calculateur de type nouveau. 3ème Colloque d’Aérodynamique Appliquée AFITAE, 1966 (to be published).Google Scholar
8.Channapragada, R. S.Compressible Jet Spread Parameter for Mixing Zone Analysis. AlAA Journal, Vol 1, pp 21882190, 1963.Google Scholar
9.Carriere, P. Recherches récentes effectuées a l’ONERA sur les problèmes de recollement. ONERA, TP No. 275. 7th Symposium of Fluid Mechanics, Jurata, 1965 ﹛to be published in the Symposium Proceedings).Google Scholar
10.Carriere, P. Remarques sur les méthodes de calcul des effets de la viscosity dans les tuyères propulsives. ONERA, TP No. 408, 1966. (To be published in Jahrbuch 1966 der Wissen. Gesell, fiir Luft und Raumfahrt eV (WGLR).)Google Scholar
11.Chapman, A. J. and Korst, H. H.Free Jet Boundary with Considerations of Initial Boundary Layer. Proceedings of the Second US National Congress of Applied Mechanics, 1954, pp 723731. American Society of Mechanical Engineers.Google Scholar
12.Chapman, D. R., Kuehn, D. and Larkson, H. Investigation on Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition. NACA Report 1356, 1958.Google Scholar
13.Cherry, T. M.A Transformation of the Hodograph Equations and the Determination of Certain Fluid Motions. Phil Trans Soc, London, A, Vol 245, pp 583626, 1953.Google Scholar
14.Chow, W. L. and Korst, H. H. On the Flow Structure within a Constant Pressure Compressible Turbulent Jet Mixing Region. NASA TN No. D-1894, 1963.Google Scholar
15.Chushkin, P. I.Calculations of Some Sonic Gas Flows. Prikl Mat Mekh (in Russian), 3 Vol 21, pp 353360, 1957.Google Scholar
16.Cole, J. D. and Kevorkian, J.Uniformly Valid Asymptotic Approximations for Certain Nonlinear Differential Equations. Nonlinear Differential Equations and Nonlinear Mechanics, Edited by La Salle, J. P. and Lefschetz, S., pp 113120. Academic Press, New York, 1963.Google Scholar
17.Crane, L. J.The Laminar and Turbulent Mixing of Jets of Compressible Fluid. Part 2: The Mixing of Two-Semi-Infinite Streams. J Fluid Mech, Vol 3, p 81, 1957.CrossRefGoogle Scholar
18.Denison, R. and Baum, E.Compressible Free Shear Layer with Initial Thickness. AIAA Journal, Vol 1, pp 342349, 1963.Google Scholar
19.Enselme, M. Oalcul des caractéristiques aérodynamiques d’un ensemble aile-fuselage en écoulement supersonique. 5ème Congrès ICAS, London. Aerospace Proceedings 1966. Macmillan, London 1967. ONERA, TP No. 363, 1966.Google Scholar
20.Erdos, J. and Pallone, A. Shock Boundary Layer Interaction and Flow Separation. RAD, TR 61-23 (AvcoCorp), 1961.Google Scholar
21.Euvrard, D.Interprétation de la résistance aérodynamique d’un profil d’aile transsonique à l’aide de recoulement a grande distance, en aval des chocs. CR Acad Sc, Paris, Vol 262, Serie A, pp 405408, 1966.Google Scholar
22.Fenain, M.La théorie des écoulements à potentiel homogène et ses applications au calcul des ailes en régime supersonique. Progress in Aeronautical Sciences, Vol. 1, pp 26103, 1961. Pergamon Press, New YorK.Google Scholar
23.Fenain, M.Calcul des ailes de forme en plan quelconque en regime supersonique. CR Acad Sc, Paris, Vol 253, pp 26342636, 1961.Google Scholar
24.Fenain, M. and Guiraud, J. P.Resolution par développements asymptotiques, de l’equation linéarisée régissant les écoulements autour d’obstacles tridimensionnels, en regime supersonique. CR Acad Sc, Paris, Vol 253, pp 23142316, 1961.Google Scholar
25.Fenain, M. and Guiraud-Vallee, D.Calcul numérique des ailes en régime supersonique stationnaire et instationnaire. La Recherche Aerospatiale, No. 115, pp 315, 1966, No. 116, pp 23-33, 1967.Google Scholar
26.Fromm, J. E. and Harlow, F. H.Numerical Solution of the Problem of Vortex Street Development. Phys of Fluids, Vol 6, pp 975982, 1963.CrossRefGoogle Scholar
27.Germain, P.Eeoulements transsoniques homogènes. Progress in Aeronautical Sciences. Pergamon Press, Oxford, Vol 5, pp 143273, 1964.Google Scholar
28.Germain, P. and Guiraud, J. P.Conditions de choc et structure des ondes de choc dans un écoulement non stationnaire de fluide dissipatif. Journal Math Pures et Appliquées, Vol 45, pp 311358, 1966.Google Scholar
29.Germain, P. and Liger, M.Une nouvelle approximation pour l’étude des écoulements subsoniques et transsoniques. CR Acad Sc, Paris, Vol 234, pp 18461848, 1952.Google Scholar
30.Godunov, S. K., Zabrodin, A. V. and Prokopov, G. P.Schéma aux differences finies pour les problèmes bidimensionnels non stationnaires de la dynamique des gaz et calcul d’écoulements avec onde de choc détachée (in Russian). Journal de Calcul Numerique et de Physique Mathématique (USSR), Vol 1, No. 6, pp 10201050, 1961. (English translation—Cornell Aero Lab transl.)Google Scholar
31.Görtler, H.Berechnung von Aufgaben an freien Turbulenz auf Grund eines neuen Näherungsansatzes. ZAMM, Vol 22, pp 244254, 1942.Google Scholar
32.Guderley, K. G.The Theory of Transonic Flow. Pergamon Press, Oxford, 1962.Google Scholar
33.Hardy, J. M. and Delery, J. Possibilités actuelles d’étude théorique d’une tuyère supersonique à double flux. AGARD—Specialists’ Meeting, Tullahoma, 1965 (to be published). ONERA TP No. 287.Google Scholar
34.Harlow, F. H. and Welch, J. E.Numerical Calculation of Time-Dependent Viscous Flow of Fluid with Free Surface. Phys of Fluids, Vol 8, pp 21822189, 1965.Google Scholar
35.Jones, R. T. Properties of Low Aspect Ratio Pointed Wings at Speeds Below and Above the Speed of Sound. NACA Report 835, 1946.Google Scholar
36.Kapiun, S.Low Reynolds Number Flow Past a Circular Cylinder. J Math Mech, Vol 6, pp 595603, 1957.Google Scholar
37.Kaplun, S. and Lagerstrom, P. A.Asymptotic Expansions of Navier-Stokes Solutions for Small Reynolds Numbers. J Math Mech, Vol 6, pp 585593, 1957.Google Scholar
38.Kirk, F. N. An Approximate Theory of Base Pressure in Two-Dimensional Flow at Supersonic Speeds. RAE, TN Aero No. 2377, 1959.Google Scholar
39.Korst, H.Auflosung eines ebenen Freistrahlrandes bei Beriicksichtigung der unspriiunglichen Grenzschichtstromung. Oster Ing Archiv, Vol VIII, p 152, 1954.Google Scholar
40.Korst, H. H., Page, R. and Childs, M. A Theory for Base Pressure in Transonic and Supersonic Flows. University of Illinois, M6, TN 392, 1955.Google Scholar
41.Krienes, K.Die elliptische Tragflache auf Potential theoretischer Grundlage. ZAMM, Vol 20. pp 6588, 1940.Google Scholar
42.Küchemann, D.Aircraft Shapes and Their Aerodynamics for Flight at Supersonic Speeds. ICAS, 1960, Zürich. Pergamon Press, 1962.Google Scholar
43.Lighthill, M. J.The Hodograph Transformation in Transonic Flow. Part III—Flow Round a Body. Proc Roy Soc A, Vol 191, pp 352369, 1947.Google Scholar
44.Lighthill, M. J.A Technique for Rendering Approximate Solutions to Physical Problems Uniformly Valid. Philos Mag, Vol 40, pp 11791201, 1949.Google Scholar
45.Nash, J. F. An Analysis of Two-Dimensional Turbulent Base Flow including the Effects of the Approaching Boundary Layer. ARC R and M No. 3344, 1963.Google Scholar
46.Nieuwland, G. Y. Theoretical Design of Shock Free Transonic Flow Around Aerofoil Sections. 5th ICAS Congress, London 1966. Aerospace Proceedings 1966. Macmillan, London, 1967.Google Scholar
47.Nitzberg, G. E. and Crandall, S. A Study of the Application of Aerofoil Section Data to the Estimation of the High-Subsonic-Speed Characteristics of Swept Wings. NACA—RM A55L23, 1955.Google Scholar
48.Pearcey, H. H.The Aerodynamic Design of Section Shapes for Swept Wings. Advances in Aeronautical Sciences. Pergamon Press, Vol 3, pp 277322, 1962.Google Scholar
49.Poisson-Quinton, P. From Wind Tunnel to Flight: the Role of the Laboratory in Aerospace Design. Wright Brothers Lecture, AIAA, New York, 1967. ﹛To be published in AIAA Journal of Aircraft.)Google Scholar
50.Rigaut, F.Determination des jets critiques par la méthode d’analogie électrique. CR Acad Sc, Paris, Vol 262, série A, pp 14151418, 1966.Google Scholar
51.Rigaut, F.Etude de jets transsoniques par les méthodes d’analogies électriques. CR Acad Sc, Paris, 1967. Vol 264, série A, pp 10861089.Google Scholar
52.Roper, G. M. Calculation of the Load Distribution, at Supersonic Speeds, on a Sweptback Wing of Arbitrary Planform. RAE Tech Report No. 66 356, 1966.Google Scholar
53. Royal Aeronautical Society. A Method of Estimating Drag Rise Mach Number for Two-Dimensional Airfoil Sections. Transonic Data Memorandum 6407, 1964.Google Scholar
54.Rubbert, P. E. and Landahl, M. T. Solution of the Transonic Airfoil Problem Through Parametric Differentiation. AIAA—Paper 66-90, 1966.Google Scholar
55.Sinnott, C. S.On the Prediction of Mixed Subsonic/ Supersonic Pressure Distributions. J of Aero Sc, Vol 27, pp 767778, 1960.Google Scholar
56.Sinnott, C. S. and Osborne, J. Review and Extension of Transonic Aerofoil Theory. ARC—R & M No. 3156, 1958.Google Scholar
57.Sirieix, M.Contribution a l’étude des éjecteurs supersoniques. Bull ATMA, No. 63, pp 687704, 1963.Google Scholar
58.Sirieix, M., Mirande, J. and Delery, J. Expériences fondamentales sur le recollement turbulent d’un jet supersonique. AGARD Specialists’ Meeting of Fluid Dynamics Panel—-Rhode-Saint-Genèse, 10-13 mai 1966. AGARD— Conference Proceedings, No. 4, pp 351-391, 1966.Google Scholar
59.Sirieix, M. and Solignac, J. L. Contribution à l’étude expérimentale de la couche de mélange turbulent isobare d’un écoulement supersonique. AGARD Specialists’ Meeting of Fluid Dynamics Panel, Rhode-Saint-Genese, 10-13 mai 1966. AGARD—Conference Proceedings, No. 4.Google Scholar
60.Spreiter, J. R. and Alksne, A. Y. Thin Airfoil Theory based on Approximate Selection of the Transonic Flow Equation. NACA Report 1359, 1958.Google Scholar
61.Thurber, J. K.An Asymptotic Method for Determining the Lift Distribution of a Sweptback Wing of Finite Span. Comm in Pure and Applied Math, Vol XVIII, pp 733756, 1965.CrossRefGoogle Scholar
62.Tomotika, S. and Tamada, K.Studies on Two Dimensional Transonic Flows of Compressible Fluid. Part III. Quart of Appl Math, Vol 9, pp 129147, 1951.Google Scholar
63.Van Dyke, M. D.Perturbation Methods in Fluid Mechanics. Applied Mathematics and Mechanics, Vol 8, Academic Press, 1964.Google Scholar
64.Van Dyke, M. D.Lifting-Line Theory as a Singular Perturbation Problem. Arch Mech Stos, Vol 16, No. 3, pp 601614, 1964.Google Scholar
65.Ward, G. N.Supersonic Flow Past Slender Pointed Bodies. Quart J Mech Appl Math, Vol 2, pp 7597, 1949.Google Scholar
66.Weber, J. The Calculation of the Pressure Distribution on the Surface of Thick Cambered Wings and the Design of Wings with Given Pressure Distribution. ARC—R & M No. 3026, 1957.Google Scholar
67.Zierep, J.Die Integralgleichungsmethode zur Berechnung schallnaher Strömungen. Symposium Transonicum, edited by Oswatitsch, H., Springer-Verlag, pp 92109, 1964.Google Scholar